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Abstract

The continuity and momentum equations for electrons and multiple ion
species are solved analytically and numerically using a new model for
ambipolar diffusion. The general form of the model is valid for any quasi-
neutral plasma for which the diffusion approximation is appropriate,
including positive or negative ions, arbitrary geometries, and time
dependence. The model provides criteria for determining when single ion
diffusion theory is appropriate for describing multi-ion discharges, when a
multi-ion proportional model is appropriate, and when a multi-ion
nonproportional model must be used. The constant of proportionality for
proportional discharges is shown to be the ratio of the source term for each
species to the sum of the source terms for all species, with the source term
normalized by the respective free diffusion coefficient.

Proportional analytic solutions are determined for uniform external
ionization in planar and cylindrical geometries, double-exponential
external ionization in planar geometries, ionization by the bulk electrons in
planar and cylindrical geometries, and bulk ionization and nonresonant
charge transfer in planar geometries. Numerical comparisons to previous
experimental and theoretical determinations of electron temperature verify
earlier simpler models. Previous results from a model by Wunderer are
duplicated for a nonproportional case (Wunderer, 1978). Comparison to
experimental results of Schmidt provide explanations for features of his
results (Schmidt, 1965). Numerical solutions for generic two-ion plasmas

with recombination or charge transfer as volume losses and external or

xiv
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electron impact ionization sources provide scaling relationships for the

effects of multiple ions on discharge parameters.




MULTI-ION AMBIPOLAR DIFFUSION

I. Introduction and Background

Introduction

Rationale for Investigation. One of the more difficult and interesting
problems in plasma physics is incorporating the electric field into the
description of the plasma in a self-consistent manner. This problem is
especially difficult if the field involved is generated by the separation of
charges within the plasma itself. Its intractability, as we will see in
Chapter 1I, is related to the sensitivity of the electric field to very small
changes in charge densities, and the fact that the problem must be solved
self-consistently. The first successful attempt to address such problems
was Schottky’s ambipolar diffusion model, which took advantage of the
nearly neutral conditions present in many plasmas to describe the electric
field (Schottky, 1924).

We will fully describe the rationale and derivation of Schottky’s model in
the next chapter. In brief, he addressed a single-ion plasma by assuming
the charge densities and fluxes of the two species to be equal. This allowed
him to develop a closed-form expression for the electric field without the
necessity of solving Poisson's equation. This expression, in turn, allowed
him to express the momentum (or diffusion) equation as a form of Fick’s

law.
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Since then, many authors have extended Schottky’s model to include
multiple positive ions, negative ions, and additional ionization mecha-
nisms. However, previous attempts to apply Schottky’s ambipolar model to
multiple ions have led to extremely complicated systems that required
additional assumptions or were impossible to solve analytically, and often
difficult to solve numerically. (Phelps and Brown, 1952; Oskam, 1958;
Thompson, 1959; Golubovskii and Lyagushchenko, 1977; Wunderer, 1978;
Ferreira, Gousset, and Touzeau, 1988). Only in the simplest cases, corre-
sponding to what we will later describe as simple volume ionization, or
analytically simple external sources such as uniform ionization, was
solution possible. Even then the theoretical basis of the solutions was of
limited applicability. Typical of the solutions is Brown, who stated solutions
for very simple cases without any limitations on the validity of those
solutions at all (Brown, 1966: 67-68).

In this document, we will develop a new model of multi-ion ambipolar
diffusion in weakly ionized plasmas. The new model, while similar in
many respects to Schottky's model of single-ion ambipolar diffusion, uses a
slightly different and less restrictive set of physical assumptions that
enables simple descriptions of multi-ion ambipolar diffusion. For single-
ion plasmas, it reverts to Schottky-based models. For multi-ion plasmas, it
allows analytic solutions for physically realistic systems without restrictive
assumptions, and easy formulation and development of numerical solu-
tions.

Summary of the Investigation. In the remainder of this chapter we will

briefly discuss the momentum and continuity equations, including the
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simplifications applicable to the regime of our interest. This will provide a
starting point for the remainder of the work, and allow us to point out the
assumptions inherent in any diffusion model.

In Chapter II we discuss previous ambipolar diffusion models, their
limitations, and proposed resolution of some of those limitations. We start
with a detailed exposition of Schottky’s model, so that we can see clearly the
justification for and foundations of the model. This is useful both to
understand the extensions of other authors, and to understand the differ-
ences between those models and the new model being developed here. Next,
we examine a number of works that addressed various aspects of the
system we are investigating. Finally, we discuss some of the shortcomings
of previous multi-ion models, and what this investigation will do to address
those shortcomings.

In Chapter III we formulate the new model. We start by explaining the
difference in assumptions between the present model and Schottky-based
models, and show how the assumptions lead to the new model for ambip-
olar diffusion. We then develop a simplified form useful for systems
containing only positive ions. Finally, we develop a normalized form of the
system for use in developing and investigating analytic solutions.

In Chapter IV we use the model to examine the phenomenon of propor-
tionality: the existence of multi-ion systems where the species number
densities have the same spatial dependence. In such systems, each ion
density can be written as a constant times the electron density, and so can
be said to be proportional to the electron density; hence, the name. We are

primarily concerned with systems consisting of positive ions only. We are
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able to derive a necessary and sufficient condition for proportionality to
occur, and a more general necessary condition. We discuss the implica-
tions of the necessary condition for a number of source terms, predicting
the results for the analytic solutions obtained later.

In Chapter V we develop analytic solutions for a number of cases. In
particular, we examine cylindrical and planar geometries, with source
terms representing uniform ionization, non-resonant charge transfer,
ionization by the electrons in the plasma, and ionization produced by
particles incident from both sides of a planar discharge. We include the
multi-ion equivalent of the system described by Schottky in the original
expositions of his model. We discuss the implications the solutions have for
overall scaling of the particle densities, fluxes, and electric field for the
various cases.

In Chapter VI we use numerical solutions to investigate systems not
amenable to analytic solution. We look at two classes of systems. One class
is comprised of fairly realistic systems. In these cases, the purpose of the
examinations is to compare the model to experiment or other authors’
calculations. The other class is comprised of quasi-realistic systems,
sometimes not fully attainable in reality. However, these systems allow us
to isolate and examine particular aspects of such processes as recombina-
tion and charge transfer.

In Chapter VII we present the results of the investigation, including a
summary of the significant results of the individual chapters, how the
investigation addressed the problems discussed in Chapter II, and sugges-

tions for continued research.
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In the Appendices we discuss several areas that are important, but need
not be in the main body of the work. In particular, we include the deriva-
tion of the dimensionless form of the differential equation system, the
details of an important but tedious integration, description of the basic
numerical algorithms used, and complete documentation and listings of

the programs used.

Momentum and Continuity Equations
We will be examining a fluid model of a plasma using the first two

moment equations. The first moment equation is the continuity equation:

aﬁ+V-F=S(*.t) 1-n
ot

where N is the particle density as a function of position and time, I' is the

particle flux defined by I' = Nu, S is the net production rate of the particles,

and u is the average velocity of the particles as a function of position and
time.

The second moment is the momentum equation:

mN(éP— + (\'i- V)ﬁ) = quJ- Vp + mNOU (1-2)
at ot

This form of the momentum equation is appropriate for collisional
systems where viscosity forces are negligible, and where there is no

magnetic field. Here, 5U/5t refers to the change in the average velocity due

to collisions.
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Let us now examine the changes in Equation 1-2 that produce the form
of the momentum equation appropriate for these investigations.

The du/ot term in the momentum equation can be neglected if the
characteristic time of variation of plasma parameters (such as particle
density, fluxes, electron temperature) greatly exceeds the time between
collisions (Golant, Zhilinsky, Sakharov, and Brown, 1980:193). At best, the
characteristic time of variation can be no shorter than the time it takes to

propagate a disturbance across the plasma. Therefore, we can approxi-

mate du/dt by noting that it is comparable to uw/t, where 1 is the time for

propagation of disturbances across the plasma. In a diffusive plasma, this

time is A%/D , where A is the characteristic scale length of the plasma and D
is the diffusion coefficient. On the other hand, du/dt may be approximated
by uv, , where v, is the total collision frequency. Therefore, we may neglect
the 94/3t term if the plasma response frequency vp = D/A? (not to be con-

fused with the plasma frequency w, ) is significantly smaller than the total

collision frequency. This condition is true for the plasmas of interest in this

paper. We can also define a generalized ionization frequency as the ratio of

species net source to the number density for that species: v; =SyN; . If the

total number density in the plasma is slowly varying, then the net gain in

particles described by v; must be comparable to the flux loss to the walls,
characterized by D/A? . Under those circumstances dwat may be neglected
if v; is small compared to v, .
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Even though the explicit time dependence in the momentum equation
can be neglected for a particular system, it still may be necessary to retain

the ON/ot term in the continuity equation. The reason is that the collision
term in the continuity equation involves the net source frequency v; (as
defined immediately above), not the total momentum transfer collision
frequency v, . As a result, time-dependent plasmas can often be described
with explicit time dependence appearing only in the continuity equation.
The second term within the parentheses on the left hand side of Equa-
tion 1-2 is denoted as the inertia term. For collisional plasmas it is general-
ly smaller than the pressure gradient term. In situations where collisions
can be neglected in describing the motion of the ions (commonly called

collisionless, or free fall), the inertia term dominates the pressure term.

The relationship required to justify neglect of the inertia term is
mNQ- Vi < Vp = kTVN (13)
The magnitude of (U-V)U may be approximated as u¥A, while the magni-
tude of VN may be approximated as N/A . Using those relationships pro-
duces
u < JI‘E- (14)

This implies that the inertia term may be neglected if u is small compared
the thermal velocity vy, , where vy, is defined by mvyy, Y9 = kT.

To evaluate Equation 1-4, we approximate u as A/t , with t defined as

D/AZ, just as before. With these approximations, Equation 1-4 becomes




(?\—’2 < lg‘- (1-5)

Using the definition of D as kT/mv, produces

kT < m(v.,-/\)2 (1-6)

If we then utilize the definition of vy, , we find
vin < Y2vc A (1-7)
Finally, expressing vin in terms of the definition of mean free path and

collision frequency as vy, = ViAmfp produces

Amfp < A Y2 (1-8)
In other words, the inertia term may be neglected if the mean free path for
collisions is small compared to the characteristic scale length of the
plasma.

We neglect the inertia term in describing diffusional plasmas in the
model we are developing. Note, however, that several of the papers we
discuss in the next chapter retain it, at least for some of the species. It
must be retained for ions in the regime approaching free fall.

The last term on the right-hand side of the equation is the change in
momentum of the particles due to collisions with other species. One effect
present in this term is the change in momentum associated with the
creation or loss of particles, such as might occur in ionization. Such a
creation or loss represents not only a change in total number of particles as
described in the continuity equation, but also a change in momentum for
the species due to the momentum possessed by the particle that is produced
or lost. It is difficult to make general statements about when this effect may
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be neglected, since the particle produced (or lost) may represent either a
loss or gain of momentum for the species. For instance, electron impact
ionization produces two electrons, one generally of considerably lower
energy than the other. Furthermore, the total energy of the two is less than
the initial energy of the incident electron, since energy was needed for the
ionization itself. This can represent a net loss of momentum to the elec-
trons. However, every collision of an electron with a background particle
represents a change in the net momentum of the electrons. In general, it is
safe to say that if the collision frequency associated with a particular
reaction is negligible compared to a suitably defined total collision frequen-
cy, it is possible to neglect the momentum change associated with particle
creation or loss. Such a situation usually exists for weakly ionized colli-
sional plasmas. The other effect present in this term is the change in
momentum that particles undergo when colliding with the background
gas. This change in momentum is generally not negligible. Therefore, we
retain only that term. In that case, the collision term can be written in
terms of a suitably defined collision frequency as -vmNu .
We express the pressure in terms of temperature:
p = NkT (1-9)

This gives a V(NkT) factor in the second term of the right hand side of

Equation 1-2. If thermal gradients are small, we can remove the tempera-
ture from within the gradient operator. Otherwise, a temperature diffusion

term must be included. If we then define the diffusion coefficient:

D= ﬁ% (1-10)
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and mobility:

- ldl
a m

y (1-11)

We obtain the momentum equation in the form we will use in our analysis:

I = + uNE - DVN (1-12)
where the + takes into account the sign of the charge.

Other authors, depending on the conditions they are describing, may
retain terms we have neglected. However, this form is the appropriate
expression for a collision-dominated weakly ionized plasma.

Before we leave the question of simplifications to the momentum
equation, we should note that there are effects present in the discharge that
are produced by interactions between the charged particles and the neutral
background gas. We will consider briefly two of these; cataphoresis and
electrophoresis. Cataphoresis is the process whereby transport of ions
causes gradients in the background number density. The process of
creation of ions, their transport to a different location in the discharge, and
their recombination (either in the gas or at the wall) represents a net
transport of neutral particles, as well. In general, cataphoresis may be
neglected if the ion density is much less than the particle density. For the
weakly ionized plasmas being investigated here, that condition is true.
Electrophoresis is the process whereby the differing momenta of the ions
and electrons as they arrive at the walls of the discharge results in a net
momentum transfer to the walls of the discharge. The result, of course, is

a net momentum transfer to the discharge, as well. The details are related
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to the momentum gained or lost by the creation or loss of charged species.
Therefore, electrophoresis may be ignored in discharges where the collision
term in the momentum equation need only include simple momentum
transfer collisions, and not particle production or losses. Such is the case
for the discharges we are investigating.

In summary, the assumptions and restrictions inherent in the form of
the momentum equation we use in this analysis are that there are no
temperature gradients present, that the collision frequency is independent
of position, that the inertia term can be neglected, and that the explicit time
derivative of the particle velocity is small compared to the collision term.

Finally, if there is no electric field, the momentum equation reduces to a

form called Fick's law:

= -DVN (1-13)
As we shall discuss in the next chaptcr, Fick's law is much easier to deal

with than the form that includes the electric field.
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II. Historical Perspective of the Theory of Multi-lon Discharges

Introduction

In this chapter we will discuss some of the previous works that ad-
dressed the collisional positive column. Our intent is to examine the
difficulties in describing diffusion in the presence of electric fields, see how
various authors addressed those difficulties, and point out areas where
improvement is needed.

We first briefly describe the historical background of the theory of single-
ion ambipolar diffusion. We discuss Schottky’s original theory, which
assumed quasi-neutrality in the body of the plasma, but ignored the sheath
(Schottky, 1924). We include solutions for cylindrical and planar geome-
tries. Next, we discuss Ecker’s paper, which extended Schottky’s theory to
non-neutral plasmas, but retained congruence (Ecker, 1954). We also
consider the paper of Tonks and Langmuir, who used an approach more
general than Schottky’s to describe quasi-neutral plasmas in the expanded
regime of ambipolar diffusion to free fall (Tonks and Langmuir, 1929).
Finally, we discuss Allis and Rose, who described diffusional plasmas over
the entire regime from the free diffusion of plasmas whose number
densities were too low to enforce quasi-neutrality to ambipolar diffusion
(Allis and Rose, 1954).

Earlier works on multi-ion ambipolar diffusion, including Oskam's
paper (Oskam, 1959) are then considered. We use the difficulties in

justifying the assumptions required to produce solutions to Oskam's model
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as an example of general difficulties that occur in Schottky-based models.
We also discuss other multi-ion plasma models, with an emphasis on the
limitations and applicability of the models, and the differences between
those models and the present one.

We finish by discussing problem areas that still need to be addressed,
and how they will be addressed in the remaining chapters of this docu-

ment.

Single-ion Models

First, we will discuss single-ion diffusion, starting with Schottky’s
theory of single-ion ambipolar diffusion. In particular, we will examine the
difficulties inherent in modeling the diffusion of charged particles with the
self-consistent field explicitly included. These difficulties will demonstrate
why Schottky was interested in taking advantage of the physical character-
istics of diffusional, quasi-neutral plasmas to develop a model that did not
include an explicit field dependence. We will describe Schottky’s deriva-
tion, the assumptions used, the resulting model, and typical solutions.

We will then continue with three other single ion models, those of Tonks
and Langmuir (Tonks and Langmuir, 1929), Ecker (1954), and Allis and
Rose (Allis and Rose, 1954). Tonks and Langmuir developed a more
general model of plasmas that recovers Schottky’s model in the collisional
quasi-neutral case, but which also includes the free fall case. Their model
addresses non-neutral plasmas in the sheath region, providing values for

the sheath thickness. Allis and Rose extended Schottky’s model to include
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the transition to free diffusion, where the Debye length is no longer much
smaller than A .

Schottky’s Model of Ambipolar Diffusion.
Rationale for Ambipolar Diffusion. Recall the momentum equation

for a collisional plasma (Equation 1-9):

—

I' =-DVN + uNE (2-1)

If E is produced by external means, independent of the plasma conditions,

the changes that E produces have no effect on E . Under these circum-

stances the diffusion and continuity equations form a system that can
usually be dealt with in a straightforward manner. In general, however,
the charged particles in the generatic - of the electric field, or at least a
significant part of it. Under these circumstances, the problem of describing
the motion of the species in the plasma must include the field in a self-
consistent fashion. To do so requires another relationship to determine the
electric field. In principle, that relationship should be based directly or
indirectly on Maxwell’s equations. In particular, we can use Gauss’s law
for the electric field, or its more commonly used equivalents; Poisson’s

equation and the definition of the field in terms of the scalar potential:

V=P
¢ €0
- (2-2)
E=-V¢

where p here is used to represent the volume charge density, ¢ is the

electric scalar potential, and ¢y is the permittivity of free space. Un-




fortunately, Equation 2-2, along with the continuity and momentum
equations, produces a system of differential equations that can be extremely
difficult to solve.

The difficulty arises because of the extremely large fields that can be
produced by very small net charge densities. For instance, consider the
numerical problem of describing a near-neutral plasma typical of those
found in the positive column of a glow discharge. We will assume a
charged particle density of 10° particles/cms, which is well within the
range typical of laboratory plasmas (von Engel, 1965:241). We will also
assume that the numerical errors are on the order of only one part in 10°.
The numerical errors are equivalent to a charge density that would produce
a change in the electric field of more than 0.18 V/cm. If we assume a

reasonable value of 1.0 eV for the electron temperature, and also assume

that the electrons can be described in terms of the electric potential ¢(r) by

the Boltzmann relation N,(r) = Neo exp(e¢(r)/kT,) , we find that the electron

density changes almost 20% in one cm. Obviously, such a drastic change
invalidates the description of the plasma as quasi-neutral and renders the
numerical .:adel useless.

Similar difficulties occur in trying to make simplifying assumptions to
allow analytic solutions. As can be seen from the discussion in the previ-
ous paragraph, an assumption that allows errors in the number densities
of only one part in 10° can lead to faulty values for the electric field that

produce gross errors in the solutions.




The difficulties in finding analytic solutions to this system led to
Schottky’s development of a model that took advantage of quasi-neutrality to
eliminate the need to explicitly include the electric field.

Single-ion Ambipolar Diffusion. Schottky first introduced the concept
of ambipolar diffusion to describe conditions in the volume of the plasma
(Schottky, 1924). He established an analytic solution using the assump-
tions of quasi-neutrality and congruence. The basic principle of quasi-
neutrality is that the extremely strong fields produced by any charge
separation in a plasma tend to eliminate that charge separation. As a
result, the plasma has a near-zero net charge density. The role of congru-
ence can be established by recalling the continuity equation (which, for

convenience, we use in the time-independent form):

V.Ir=S@ 2-3)
for each of the two species (positive and negative). Conservation of charge
implies that S(r) for the positive species is equal to that for the negative,
since we cannot create one charge polarity without creating the other.
Therefore, we conclude that the divergences of the positive and negative
species are equal.

Now consider a one-dimensional system. If there is any point where the
fluxes are equal, then they will be equal at every point. This condition is
referred to as congruence. From this, the system of coupled sets of moment
equations plus Poisson’s equation can be reduced to a single set of moment
equations. Note that we are not requiring a planar single-dimensional

plasma. All that is necessary is that variations in the plasma be single-




dimensional. An example would be a cylindrical plasma with symmetry in
the longitudinal and azimuthal directions. Such a plasma can be described
by a one-dimensional model with radial variations only.

Derivation of Schottky’s Model. An exposition of Schottky's original
derivation for time-independent diffusion can be found in most basic
plasma texts (e. g., Mitchner and Kruger, 1973: 146-149. von Engel, 1965;
143-145. Chen, 1984:159-160). Schottky’s original development considered
a one-dimensional cylindrical case. We will treat the more general case,
paralleling the development given by Chen. Consider the time-indepen-

dent diffusion and continuity equations for electrons and positive ions:

—

I =-D;VN; + p,-Nii‘i

T, = -DyVN, - teNoE
(24)

s

V- I;=§
V'I-:ezse

As did Schottky, we assume N; = N, = N . We also assume congruence;

- -

=T, at every point in the plasma. From congruence, we obtain

-D;VN; + i5NiE = -DeVN, - poN.E (2-5)

which, when coupled with quasi-neutrality, yields

ﬁ E(Q ‘De)
N/ (Hi + He)

(2-6)

This leads to




T < .vN[#De* teDs
Hi + He
27
= 'DaVN
where D, is the "ambipolar diffusion coefficient.”

We no longer have a system containing an explicit dependence on the
electric field. Instead, by assuming quasi-neutrality and congruence we
have eliminated the electric field from the system entirely.

Schottky’s Solutions. The system generally referred as a “Schottky”

system contains source terms of the form
V- =vN, (2-8)
for each species. We take the divergence of the simplified momentum

Equation 2-7, and substitute for V-I' using Equation 2-8 as appropriate. The

following boundary conditions are then applied to obtain:

no)=0

(2-9)
N@L)=0

where L is the radius or half-width of the plasma, depending on the

geometry chosen. The following solutions result. For planar geometry:

N Neoc"*'?zfl"') (2-10)
BNt e
For cylindrical geometry:
N NM({%) (2-11)

e By Mo flof)
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where d is the half-width of the planar discharge, R the radius of the
cylindrical discharge, and A¢ is the first zero of the zero-order Bessel
function Jo , and J, is the second-order Bessel function. Inherent in each of
these solutions is an eigencondition on D, and v (we discuss these condi-
tions in a later chapter in a more general context):

-5

vyR? _ 52
Da *o

(2-12)

We should note that this model, as is true for all models based upon
quasi-neutrality, is only valid away from the boundary of the plasma. Near
this boundary, in what is generally termed the plasma sheath, large
charge differences are developed that invalidate the assumption of quasi-
neutrality. For these reasons, other models that explicitly deal with the non-
neutral regime must be used to calculate sheath potential and thickness.

Before we leave Schottky’s model, it is important to clearly restate the
assumptions Schottky made.

1. He assumed quasi-neutrality.

2. He assumed equal fluxes (or "congruence").

3. And, although this point is usually ignored in discussions of
Schottky diffusion, Schottky implicitly assumed (but did not take

advantage of) VN; = VN, .

This third assumption will assume more significance later, when the
new model of multi-ion ambipolar diffusion is presented. In fact, we shall
see that the new model, which uses assumptions 1 and 3 explicitly, reveals

assumption 2 as a consequence in those physical situations where it is
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valid. For the moment, we will merely note that 3 is implicit in Schottky’s
replacing the separate ion and electron densities with a single N, and then

describing the system in terms of VN instead of in terms of VN, and VN;.

Tonks and Langmuir. Tonks and Langmuir used a totally different
approach to the problem of describing discharges (Tonks and Langmuir,
1929). First, they assumed that the ions started from rest, with their only
velocity being that pr~duced by the field. Furthermore, instead of using the
momentum equations per se, they made two explicit assumptions:

1. The electrons were in equilibrium with the scalar potential, such

that the electron distribution could be described by the Boltzmann
relation as (Tonks and Langmuir, 1929: 883)

Ne . exol &0
Ny em\kT, (2-13)

2. The discharge can be entirely described in terms of Poisson’s
equation, where the charge density is expressed as the difference
between an electron charge density derived from Equation 2-13 and
an ion charge density whose definition varied according to the
particuiar situation, but which could always be written in terms of
an ion velocity.

Depending on how they expressed Poisson’s equation, Tonks and
Langmuir could describe a wide variety of discharge phenomena. They
examined a parameter space that spanned two characteristic effects:

1. Mean free path for collision. They examined the cases where the
mean free path for collision was much longer (“free fall”) or much

shorter (“diffusion”) than A , as well as the intermediate case.
2. Effect of the electric field. Although their terminology was

somewhat different, they divided the discharge into two regions; the

plasma, where quasi-neutrality held, and the sheath, where it did
not hold.

They developed a variety of solutions for the plasma region, including

source terms for both uniform ionization and ionization proportional to the
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electron number density. Their principal result in the sheath region was
an expression for the sheath thickness, in the free fall limit. Although
most of their development was based on assuming that the ions’ thermal
velocity was negligible compared to the field-induced motion, they did
examine cases where the thermal velocity was small but non-zero. They
also examined solutions for geometries corresponding to probes inside the
plasma.

Tonks and Langmuir used Poisson’s equation as the basic equation of

their system (Tonks and Langmuir, 1929:883):

r
V2¢ - 4reNy exp ed ) + 4ner® —Iilz—adz =0 (2-14)
k’re 0 Vz(r)
where Ny is the elec’ .- density at the origin, B is a parameter with value

1, 2, or 3 in planar, cylindrical, or spherical geometry, respectively, N; is

the number of ions produced per em™

-8 at z, and v,(r) is the velocity of ions
which were generated at z but are now at r.
The key to solving this equation is the proper determination of N; and v .

For uniform external ionization, N, is a constant. For ionization dependent

on the electron density, N, = vNu(z) . For free fall, v, is determined by the

difference in potential the ion has been subjected to in traveling from z to r.
For diffusion, v; is the drift velocity determined by the sum of the field-
induced and gradient-induced fluxes (Tonks and Langmuir, 1929:887):

vz = {D/N,}dNp/dr - (eD/kTg)dV/dr (2-15)
This is recognizable, of course, as the momentum equation for ions, with

N, (r) as the ion particle density.
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Tonks and Langmuir divide the discharge into two regions. For the

plasma volume, they assume that the Laplacian of ¢ is negligible (Tonks

and Langmuir, 1929:883). In the region they define as the sheath, they
assume no curvature in the system (i. e., they assume planar geometry for
all systems), they assume that the ion current density in the sheath is
constant, and they drop the electron charge term from the generalized
plasma-sheath equation “when it becomes negligible” (Tonks and Langm-
uir, 1929:905)

Tonks and Langmuir recover Schottky’s description for plasmas with

ionization proportional to the electron density and mean free path much

less than A . In order to explain this, we need to examine the consequences

of Equation 2-13 more closely. If we take the logarithm of that equation, and

then the gradient, we find

—“-';Vq) = VN,
De Ne

(2-16)

where we have used the Einstein relationship to express e/kT, in terms of p

and D. We can then use the definition of the field in terms of the scalar

potential to express Equation 2-16 in a suggestive form:

1eN.E = - D,VN, (2-17)

But, this is the time independent momentum equation for electrons, for the
case where the electron flux is approximately zero. (See Equation 2-4.)

Let us examine the concept of zero electron flux more closely, especially

in the context of ambipolarity. We note that the electron mobility and

diffusion coefficients significantly exceed that of the ion. Ambipolarity is
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the condition that a self-consistent field in the plasma will develop so as to

equalize the ion and electron fluxes in a quasi-neutral plasma. Given the
relative magnitudes of u and D for the two species, this equalization arises

by the electric field achieving a necessary value to reduce the electron flux
to match the ion flux. The result is that the field-induced flux of electrons is
oppositely directed, and essentially equal to, the gradient-induced flux.
This is described by Equation 2-17. Therefore, Tonks and Langmuir’s
assumption of the Boltzmann relation for the electrons and the assumption
of quasi-neutrality implies that the radial electric field is equivalent to the
ambipolar field. We will revisit this result in the next chapter, when we
discuss the new ambipolar diffusion model. In that chapter we will
examine exactly under what circumstances the Boltzmann relation follows
from ambipolarity for circumstances where the electron mobility and
diffusion coefficients are much greater than the ion mobility and diffusion
coefficients.

Since Tonks and Langmuir’s results produce ambipolar diffusion in
certain cases, Schottky’s theory is a limiting case of Tonks and Langm-
uir's for the regime in which Schottky’s theory is applicable:

1. In assuming that the Laplacian of the potential is negligible in the

plasma, Tonks and Langmuir set the expressions for ion and

electron density as defined in our Equation 2-14 equal to each other,
which implies quasi-neutrality.

2. Tonks and Langmuir assume an expression for the electron

number density that requires the electric field in a quasi-neutral

plasma to be equivalent to the ambipolar field.

3. Tonks and Langmuir incorporate the momentum equation for
ions to determine the ion velocity.
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Ecker. Ecker examined a subnormal discharge in mercury by assum-
ing congruence in a development similar to Schottky’s, except that he did
not assume quasi-neutrality (Ecker, 1954). Instead, he explicitly distin-
guished between the positive and negative charge densities to obtain a more
general form of Schottky’s model. For quasi-neutral plasmas he obtained
Schottky’s model exactly. In general, his model did not require any
particular relationship between the positive and negative number densities.
In order to formulate approximate solutions, however, he assumed that the
two densities had the same spatial dependence (this is equivalent to the
proportionality condition for multi-ion models, which we will discuss
shortly). His technique produced those solutions for which the spatial
dependence of ions and electrons was the same, and which also minimized
the total error in the differential equations.

Allis and Rose. Allis and Rose addressed the transition regime between
free and ambipolar diffusion (Allis and Rose, 1954). They also used
congruence without assuming quasi-neutrality. Their approach relies on
modifying their expression equivalent to the Schottky eigencondition in
Equation 2-12. That eigencondition applies to free diffusion, ambipolar
diffusion, and the transition regime, if the proper definition of the diffusion
coefficient D is used. Schottky’s D, is the appropriate form for ambipolar
diffusion; Allis and Rose sought the appropriate form for other regimes.
They produced analytic solutions applicable to various situations by several
methods. First, they assumed that the ratio of positive ions to electrons was
constant in defining the equivalent to the ambipolar diffusion coefficient.

They investigated a discharge with the electron temperature much greater
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than the ion temperature by dividing it into an interior region and a sheath.
They also made approximations appropriate to a plasma near the quasi-
neutral limit. These methods allowed them to produce analytic solutions
for the problem. They also produced a numerical solution for a hydrogen
discharge between parallel plates, primarily to investigate the range of
validity of their analytic approximations. They found that the spatial
profiles were only crudely approximated by the theory, but that various
integrals over the number densities were reasonably accurate.

Summary for Single Ion Models. We have presented only four of the
many single ion models that have been developed to describe discharges.
We chose these four because they are representative of work in this area.
Schottky’s is the seminal work on ambipolar diffusion, but only examines
ionization generated by the electrons in the plasma volume, without
including external sources or recombination. In contrast, the theory of
Tonks and Langmuir covers a very broad range of systems, in three
different geometries, for both volume and external sources, and spans the
regime from highly collisional plasmas to free fall plasmas. Ecker, as does
Allis and Rose, only considers collisional systems, but includes the entire
regime of ambipolar to free diffusion. Although Ecker’s formulation is
slightly more general, Allis and Rose are able to produce solutions for a
wider range of cases.

All these single-ion models, of course, share one failing for the present
purpose; by definition, they do not include multiple ions. This is not to say
that they could not be extended to address multi-ion discharges, but only

that the authors did not do so. The multi-ion models we will shortly present
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are, in many cases, extensions of the single-ion models presented here,
with varying levels of success. Other single-ion models could be included in
this summary, but they would merely fill in various portions of the parame-
ter space from free fall to collisional plasmas, and from free diffusion to
ambipolar diffusion. They would still not address the fundamental problem
of multiple ion species.

Phelps has written a particularly thorough, critical, and tutorial review
of diffusion in plasmas, including a number of different regimes in single-
ion diffusion (Phelps, 1990). He reviews contributions of Schottky, Tonks
and Langmuir, and Allis and Rose in greater detail than we do here, and
includes works by other authors that are variations of the above ap-

proaches.

Multi-ion Ambipolar Diffusion

We now address situations where there are more than two species in the
plasma. The reason for doing this is quite simple; a number of realistic
systems cannot be accurately described without accounting for the effects of
more than one ion species. The various species can be positive or negative,
and can be formed by a variety of processes, including ionization, charge
transfer, attachment, and dissociative attachment. For the purposes of this
chapter, however, the exact details of the formation processes for the
various species are unimportant.

Approaches to the problem of multi-ion diffusion may be divided into two
classes: those that assume proportionality and those that do not. We note

that, in many cases in which proportionality is involved, this assumption is
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made with no other justification than facilitating a solution. We address
proportional models first. Next, we examine models where the assumption
of proportionality is not made. Generally, (except for the model developed in
this effort) these models allow only numeric solutions.

Proportional Solutions. Numerous investigations of ambipolar diffusion
assume that the various particle densities have the same dependence on
position. This assumption is called proportionality. We will discuss one
such investigation (Oskam, 1958) in detail, and briefly describe others.

Oskam. An early multi-ion ambipolar diffusion model was Oskam's
(Oskam, 1958). We choose to review the work of Oskam because of the
thoroughness with which he delineated the system, and to demonstrate the
errors proportionality can produce when applied to nonproportional
plasmas. Oskam was seeking to provide the theoretical underpinnings to
experimental work he had performed in microwave-driven plasmas. He
was interested in two regimes:

1. The discharge plasma. Here, the microwave fields are providing

a continuous source of ionization and excitation. The electron

temperature is much higher than the gas or ion temperatures, and

the plasma is in a steady-state condition. (The microwave field
changes too rapidly for the plasma to follow.)

2. The afterglow plasma. Here, the microwave excitation has

stopped, so the plasma density is decreasing with time, due primari-

ly to diffusion losses. All species in this particular discharge have

equilibrated to the temperature of the background gas, so the elec-

trons and ions are at the same temperature.

Oskam used a multi-ion version of the momentum and diffusion

equations, which he wrote as:
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r+,i = 'D..., iVN+,i + u-..' iN+' 1E

-
-

r"!j = .D‘t ij'tj + u‘. jN" JE

. N (2-18)
VILi+ a:’l =8,

= dN_;
V r.’J'.’"j'a‘i—S j

Here, the +,i subscripts refer to the various positive species, and the -
subscripts refer to the negative species. We will maintain this notation for
the moment.

Following the assumptions in Schottky's derivation, Oskam assumed
that the total current density and the total charge density were both zero,
which is equivalent to

Z Qo.i;+,i = Z Q-.j_I:-, i
i

: (2-19)

Z Q,iNs i = 2 q.,;N. ;
i i

Using these two equations, he eliminated the electric field in exactly the

same manner as Schottky. This led to the following system of equations:
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Tyi=-D, VN, i+ N, | E k
> e kNek+ 2, 1 kN k
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Z D+, kVN+,k - 2 D-, kVN-,k

F.,j=-D.,jVN-,j'“-.jN-.J' k <
> mkNek+ 2 Nk (2-20)
k k
- N, :
\2 1‘+,i+aa:” =S+,i
V ° r_,J+aI;;J = ’j

We see that the momentum equation that relates I'y ; to VN, ; also in-
cludes all the other VN's, and similarly for the equation relating I ; to

VN_;. Oskam found the resulting system extremely difficult to solve. His

approach to the problem involved assuming proportionality in order to be
able to find solutions:
N,,i=K, iNe
N.;=K_;N, (2-21)
Oskam admits in his paper that this assumption is not always justified
(Oskam, 1958:368-369). In particular, he notes that it was not appropriate to
his time-varying afterglow plasma, where the various diffusivn modes
present had different characteristic decay times. Only after the plasma had
decayed to the fundamental diffusion mode was proportionality valid.

However, he also addresses negative ions, which also render proportionali-

ty invalid. As we shall see shortly, the difficulties are not specific to

218




Oskam; the assumption of proportionality is very common among authors
wishing to find analytic solutions to this problem.

Other Proportional Solutions. To this date, although many authors
have addressed diffusion in quasi-neutral gases, we have seen no papers
that use a multi-ion ambipolar diffusion model without using Schottky’s
assumption of congruence. None of the authors has been able to solve the
system analytically without restrictions of some kind. Usually those
restrictions are as severe as those imposed by Equation 2-21, or are exactly
the same restrictions as Equation 2-21. In some cases, the assumption is
perfectly valid for the reactions being modeled (although Schottky-based
models do not lend themselves to predicting that validity a priori). For
instance, Phelps and Brown assume proportionality when investigating
He' and Heg' in an afterglow discharge (Phelps and Brown, 1952). The only
sources and losses they include are single-step ionization by the electrons in
the plasma, charge transfer, and diffusion. In addition, all the species are
at the same temperature. As we will see in later chapters, if they were
dealing only with the fundamental diffusion mode, then for such plasmas,
proportionality holds.

Occasionally, the assumptions required are not explicitly stated. For ex-
ample, Thompson found analytic solutions for the case of a single negative
and a single positive ion species, plus electrons (Thompson,1959). However,
Clouse points out that to do so, he made a quasi-proportional assumption
(Clouse, 1985:7)

2

N,
=2 (2-22)
VN. N
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where € is the ratio of the gas to electron temperatures, equivalent to 1/yin

Thompson’s notation. This is an extremely severe assumption, equivalent
to requiring N. to vary as (N, )¢ (Clouse, 1985:15). Furthermore, the assump-
tion is never explicitly stated. Instead, it can be shown to be a consequence
of the form Thompson derives for his ambipolar diffusion coefficients
(Clouse, 1985:57-59).

We could continue with other examples. However, doing so would add
little to the discussion. Rather, we again refer the interested reader to the
review article of Phelps, who provides a fairly thorough discussion of
proportional multi-ion diffusion (Phelps, 1990.)

Nonproportional Solutions. A number of authors have produced
numerical solutions to various problems involving multiple ions. We will
give some examples; this list is not, and is not intended to be, exhaustive.
Rather, we concentrate on articles that have importance, either to the field
as a whole, or to this work in particular.

Edgley and von Engel. Edgley and von Engel performed a compre-
hensive analysis of the theory of the positive column in electronegative
gases (Edgley and von Engel, 1980). They did not use ambipolarity, but kept
the electric field as a separate dependent variable, and explicitly included
positive ion inertia in the momentum equation. This inclusion allowed
them to model free fall, where the charged particles undergo no collisions;
free diffusion, where the particles undergo collisions, but the plasma
density is low and therefore electric field effects are small enough that the

particles diffuse as if uncharged; and ambipolar diffusion, where both
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collisions and electric field must be taken into account. The resulting
system of seven differential equations and eight boundary conditions was
solved numerically. Their analysis was very thorough, but produced an
extremely wide parameter space to search. As a result, they were only able
to find numerical solutions for a restricted range of their parameter space.
They were unable to find any analytic solutions.

Ferreira, Gousset, and Touzeau. Ferreira, Gousset, and Touzeau
adapted Edgley and von Engel’s results by assuming quasi-neutrality and
ignoring positive ion inertia (Ferreira et alia, 1988). They applied the model
to the oxygen positive column. The resulting system was solved numerical-
ly. Of interest is their critique and comparison of previous works in this
area, which was concerned with validity of boundary conditions in their
own and previous authors’ work. In particular, they pointed out that
previous authors had overlooked the requirement for the proper number of
eigenconditions to produce physically realistic solutions. One of the two
eigenconditions they chose is equivalent to Schottky’s eigencondition in
Equation 2-12. They also establish a second eigencondition relating the
magnitude of the on-axis particle densities for electrons and negative ions.
Although this eigencondition is valid for their system of differential
equations, its appearance as a condition for successful solution instead of a
consequence of the solution is due to the normalizations they have chosen
for their system, not to the physics of the problem. This point will be
addressed in detail Chapter V when we discuss analytic solutions to the
model developed here. However, we point out that their approach and ours

represent different paths to the same result: they determined the on-axis
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ratio that the solutions had to have, and then found solutions that had that
ratio, and we found solutions that met all the boundary conditions, and
then from those solutions found the on-axis ratio.

Valentini. Valentini authored or coauthored a number of works
involving multi-ion discharges (e. g., Valentini, 1979. Valentini, 1980a.
Valentini, 1980b. Valentini, 1988. Shapiro and Valentini, 1991). These
examined various combinations of diffusional and free-fall plasmas, low
and high ionization fractions, quasi-neutral and non-neutral plasmas, and
single and multiple ion species. Valentini differs from others in that he
retains the inertia term for the ion momentum equation, even in diffusional
plasmas.

We will consider three examples. First is Valentini’'s 1980 article on
discharges containing excited and multiply charged ions (Valentini, 1980Db).
Valentini examined “...positive columns at low pressure containing several
species of ions...”; in particular, he included singly charged ions and either
doubly charged ions or singly charged excited ions, as well as electrons
(Valentini, 1980b; 243). Since the discharge was at low pressures, the
momentum equations for ions contained the inertia term, but no pressure
term. He stated that this neglect of the pressure term “...is applicable if the
ion temperature is considerably smaller than the electron temperature.”
(Valentini, 1980b:245). This is appropriate for the conditions he is interest-
ed in. The pressure term can be neglected if the average particle velocity is
greater than the thermal velocity. In the regimes Valentini was investigat-
ing, the electron transport was dominated by diffusion but the ions were in

free fall. This implies that the average electron velocity is determined by
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the electron thermal velocity. Since Valentini assumed congruence and
quasi-neutrality, the electron and ion average velocities were equal. As a
result, comparing the ion average and thermal velocities is equivalent to
comparing the electron and ion temperatures, which justifies the state-
ment quoted above. Valentini also claimed that inclusion of both the
pressure and inertia terms leads to mathematical divergence in the
system. He assumed quasi-neutrality except near the edge of the plasma,
and congruence, and then used these assumptions to eliminate the electric
field from the continuity and momentum equations for the electrons and
ions. Various types of power series expansions produced values for the
variables at the axis of symmetry, and numerical integration then pro-
duced solutions. In all cases, the solutions he presented “...are...for
discharges in argon in free-fall conditions...” (Valentini, 1980b;243,257).
Although he claims to extend Tonks and Langmuir to plasmas containing
two species of ions, he actually does so only for the case where two ions
exist, one singly charged and one doubly charged, and where the singly
charged ion dominates the discharge; other cases are outside the regime of
his analysis (Valentini, 1980b; 243, 262).

Valentini's 1988 paper discusses the mathematical difficulties that arise
for very high drift velocities if both the inertia and pressure terms are
retained (Valentini, 1988). He develops a single-ion model that retains both
terms, and then uses a number of different power series methods to obtain
solutions without assuming quasi-neutrality. He then extends this to a
multi-ion model that explicitly includes quasi-neutrality. He provides no

solutions for the multi-ion case.
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Finally, consider Shapiro and Valentini (Shapiro and Valentini, 1991).
This is an extension of the article just discussed to include high ionization
rates in multiply charged ion plasmas “...under free-flight conditions.”
(Shapiro and Valentini, 1991:391). The authors treat electrons, single and
doubly-ionized ions, and neutral gases in a cylindrical quasi-neutral
positive column at very low pressure. They consider very high degrees of
ionization, so that the background gas density can no longer be considered
constant, but must be included in the differential equation system. The ion
inertia terms are included in the momentum, and the pressure terms are
discarded. To solve this system, they assume congruence and quasi-
neutrality. This allows them to eliminate the electric field from their
system. They then establish boundary conditions based on the symmetry of
the system, the normalization of the electron density, and the requirement
that the derivatives of the variables be bounded. They use a power series
expansion about the axis of symmetry to establish the starting values for the
system, and then numerically integrate the system. They present results
for a number of cases involving variations in the ratio of ionization rates for
the two species, the fractional ionization, and the importance of Coulomb
collisions.

Examination of Valentini’s works reveals that they are all similar and
are based on retention of the inertia term in the ion momentum equation,
generally to the exclusion of the pressure term. Although his theoretical
models are very general, addressing the entire regime of the free-fall
discharge and approaching the diffusion regime, his solutions tend to rely

on power series or purely numerical methods to solve the systems. He
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addresses the extremes of the regimes, beyond the interest of other authors.
The articles discussed above are typical in this regard; phenomena
addressed in one, the other, or both include ionization fraction much
higher than the typical positive column (although not out of line for ion
lasers), multiply-charged or excited ions, or nonuniform background gas
density and temperatures. With situations of such complexity, only
numerical solutions are possible.

Wunderer. Wunderer derived a model for plasmas containing
multiple positive ions using Schottky’s assumptions (Wunderer, 1978). In
addition, he expanded the electric field in a power series to allow for easier
numerical solutions. He obtained only numerical solutions, but concen-
trated more on showing the general failure of the assumption of propor-
tionality. We will discuss his model in much more detail in Chapter VI,
when we compare the results of our model with previous efforts. Of general
note, however, is that he is one of the few authors to address external

ionization sources for multi-ion discharges.

Conclusions Drawn from Comparison of the Various Models

Table 2-1 summarizes the various features of the models discussed,
including the model to be developed in this paper. Several conclusions can
be drawn from the works described above. First, analytic solutions are not
obtained for models that retain Poisson’s equation. Second, none of the
models produced multi-ion analytic solutions without assuming propor-
tionality or some other condition equally restrictive. Third, based on the

difficulties Edgley and von Engel found in producing numerical solutions,
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Table 2-1. Comparison of Various Models

Article Additional Major Area of Solutions
Assumptions Applicability
Schottky, 1224 Quasi-neatrality, Single-ion Analytic
congruence, zero Diffusion
charge gradient
Tonks and Quasi-neutrality, Single ion, free- | Analytic %
|| Langmuir, 1929 | congruence fall to diffusion
Ecker, 1954 Congruence, Single ion free Numerical
{ proportionality diffusion
Allis and Rose, Congruence Single ion free Numerical
1964 diffusion
Oskam, 1958 Quasi-neutrality, Multi-ion, Analytic
congruence, diffusion
‘proportionality
Edgley & von None Multi-ion, free Limited
Engel, 1980 to ambipolar numerical
diffusion, free
fall to diffusion |
Ferreira et Quasi-neutrality, Multi-ion, Numerical
alia, 1988 congruence diffusion
Valentini et Free fall Multi-ion, free Numerical
alia, various fall
Present Model Quasi-neutral, zero | Multi-ion, Analytic
charge gradient diffusion and
numerical |

it is difficult to model multi-ion systems by brute force techniques. Instead,

it is generally necessary to take advantage of the physical properties of the

discharge to justify a simplifying assumption such as quasi-neutrality.

In Table 2-1, “Additional Assumptions” refers to assumptions beyond

those necessary to produce the final form of the momentum and continuity
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equations shown in Chapter I. “Zero charge gradient” refers to the as-
sumption that the gradient of the net charge density is zero.

Problems To Be Addressed

A number of problems in describing multi-ion ambipclar diffusion have
not yet been addressed by other authors. The remaining chapters will
address many of them. At this point, we will describe exactly what those
problems are.

Proportionality. Proportionality has been widely used to describe multi-
ion plasmas, both in theoretical analyses and in interpretation of experi-
mental data. To date there has been no analysis of when it will be valid,
and when it will not. Furthermore, the assumption of proportionality
under present theories does not provide any information about the form of
possible analytic solutions, except for the fact of proportionality itself.
Finally, there are no descriptions of the difficulties in defining and using
measurements of proportionality. All these issues will be addressed in
Chapters IV, V, and VI.

Analytic Solutions. At present there is no multi-ion diffusion model that
produces analytic solutions without assuming proportionality, or some
other constraint equally restrictive. Present theories can only produce
analytic solutions by first assuming proportionality (or some other restricti
ve constraint), finding the solutions, and then seeing if the assumption is
valid. In Chapter V we will see analytic solutions developed in most cases
without the assumption of proportionality or any other restrictive constrain

t. Even when a solution cannot be found without the assumption of propor-
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tionality, the results of the analysis in Chapter IV can used to determine
the form of the solution and verify the validity of the assumption, prior to
determina-

tion of the solutions.

Scaling Relationships. Although scaling relationships for single-ion
ambipolar diffusion are well-known, the lack of analytic solutions has
made development of additional scaling relationships for multi-
ion diffusion difficult to date. In Chapters IV, V, and VI, expressions will
be developed that quantitatively or qualitatively describe the scaling of such
parameters as on-axis densities, species fractions, particle fluxes, and

electron temperature.
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III. New Ambipolar Diffusion Model

Introduction

Recall that Schottky’s model of ambipolar diffusion relies on the assump-
tion of congruence, and leads to multi-ion models that cannot produce
analytic solutions without restrictive assumptions. Even though congru-
ence is very often a -alid assumption, it is not universally so. It would be
useful to develop a model that is based on a more general assumption than
congruence, and which allows analytic solutions without restrictions as
severe as proportionality. The model presented here does that.

We will develop the model in a completely general formulation. We will
then look at the form the model takes when used to investigate time-
independent systems containing only positive ions. Finally, we will
transform the system into a dimensionless form that is more convenient for

theoretical analysis than a form using the physical variables.

General Formulation

As did Schottky, we assume charge neutrality:
Y @iNei=2 4N (3-1)
i ]

We also assume that the gradient of the net charge density is zero, which is
equivalent to assuming that the charge-weighted sum of the gradients of

the particles densities are equal:

2 @ VN; =Y q VN, 3-2)
i j
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This is the implicit assumption that Schottky made, but did not explicitly
use. It cannot be justified on purely mathematical grounds; as long as we
have quasi-neutrality, and not exact neutrality, it is possible for Equation
3-1 to be valid, without Equation 3-2 being valid. For example, let us look at
a hypothetical example, chosen not because it is realistic, but because it
illuminates the mathematical possibilities. We will assume that N; and
N. may be defined as follows:

i = Nox (33)

Ne = No(x+8cos kx)

If we have & << 1, then quasi-neutrality is valid. However, note that we

obtain the following results for the gradients of the number densities:
VN; = Ny

(34)
VN, = N¢{1-A8sinAx)

Depending on the relative magnitudes of A and &, the difference between
VN. and VN; can be very large, thus violating the assumption.

At first, it would seem that the relatively poor mathematical justification
for Equation 3-2 casts doubts on the model we are developing. However, as
von Engel has pointed out, there are very strong physical grounds to believe
that such a pathological case cannot occur in practice; if there were
differences between the gradients, strong fields would be created that would
eliminate the differences (von Engel, 1965:143). (It should be pointed out
that von Engel makes this assumption, and justifies it, but does not use it.

Equation 3-2 is the crucial assumption for the new model. Because of its

importance, we should discuss the general validity of this assumption, as
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opposed to the assumption of congruence that Schottky used. Congruence
ultimately rests on Equation 3-1 and the continuity equations. From
conservation of charge, we know that the sum of net source terms for the
positive species must equal the sum of the negative terms. From quasi-
neutrality, we know that the sum of dN/dt for the positive terms must equal

the same sum for the negative terms. Therefore, summing the continuity

equations implies that the sums of the V-I''s of the two charge polarities

must be equal also. In a one-dimensional system, this implies that the
fluxes themselves are equal. However, in systems of more than one
dimension, it is possible to maintain quasi-neutrality without having the
fluxes equal. Rather, it is sufficient for the magnitudes of the fluxes to be
equal: their directions can be different. For example, consider the common
textbook problem of diffusion in the presence of a magnetic field. The
cyclotron frequency of ions is much lower than that of the electrons. As a
result, it is possible for situations to arise where the ions undergo many
collisions in a single orbit, while the electrons do not. Since collisions tend
to disrupt the coherent cyclotron orbiting, electron diffusion across the field
is restrained by the magnetic field more than the ion diffusion. As a result,
it is possible for the electrons to leave only by diffusing along the magnetic
field while the ions can diffuse across the field. (For a detailed exposition,
see Golant, Zhilinsky, Sakharov, and Brown, Mitchner and Kruger, or
Chen (Golant, Zhilinsky, Sakharov, and Brown, 1980:305-308. Mitchner
and Kruger, 1973: 173-182, 179. Chen, 1984: 173-175).) In consequence, we

see that congruence is generally valid only for one-dimensional plasmas.




Equation 3-2 rests on much firmer grounds than congruence. First, the
very presence of diffusion itself tends to eliminate small-scale gradients in
particle density. This tendency reduces the gradients in charge density
that could invalidate Equation 3-2. Second, as was noted above, any
gradients that did exist would produce fields that would also tend to
eliminate the gradients. In a real plasma, such gradients imply changes
over a distance on the order of the Debye length at the most. But the fact

that we are describing quasi-neutral plasma is sufficient to ensure that the
Debye length is much smaller that the characteristic physical length A of
the plasma for almost all cases of interest. Therefore, we conclude that
using Equation 3-2 to describe features of size comparable to A for a quasi-

neutral plasma is quite appropriate.

To continue, if we rearrange the first two equations of the system in

Equation 2-8, we get
I‘+,i Heji
VN,ij=-—=+—NyE
L W Wi
. (3-5)
Iy Ky
i=-—L. A NSE
VNJ D.J. D.J J

We now multiply these equations by their charge, sum over i or j, as
appropriate, and set them equal, in accordance with Equation 3-2. It is

then straightforward to use the result to find the electric field:

@il @il
P 2o
E _ i +l j -

= : a
z q;;j::,‘N+; Z J“‘JN
J

(3-6)

i
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Note that the sums are over all positive or negative species.
Upon substituting Equation 3-6 into Equation 3-5 we obtain

I'
. ZQO» +k quD
. )3

" Dui Dy zq. N+k+2q,DN

= Z Qi cur -
j—— ke
WN, j=- i iy D"" K Dk
o D.,; D.
3 ; D N+1+2Q-kD,kN+k
3-7
- oN.
V ’r+,j+ a:’l =S+,]
=~ aN.;
v 'r_,j'i' —-:*—J‘;S.,j

Note the significant differences between this form and, for instance,

Oskam's. In Oskam's form, each equation for VN included I' for the
same species, plus all the other VN's. In this model, each VN equation
includes all the I_: 's, but no other VN’s. Note also that Oskam’s form had,

in the denominator, sums over terms of the form quN. Even if we have
singly-charged ions, all at the same temperature, we cannot simplify these
sums. However, Equation 3-7 has sums over terms of the fornm gqNwD . As

we will see shortly, this form allows for tremendous simplification for

certain conditions.




Both the new model and Schottky-based models are equally valid for any
system where ambipolar diffusion itself is valid. The differences are that
Schottky-based models use all the assumptions of the new model plus
congruence and that in many cases the new model is much easier to solve,
both analytically and numerically. In the next section we will develop the

formalism for such cases.

Time-Independent Formulation, Positive Ions

It is especially fruitful to examine time-independent cases involving
positive ions. In our formulation, only the continuity equations had explicit
time dependence. If we consider stationary conditions and assume that the

only negative species present are electrons, Equation 3-7 becomes

(3-8)

VIe=S,

Now, recall the Einstein relationship for ions:

i Qi
B.d (3-9)
D kT,




In almost all plasmas where sufficient collisions occur to make diffusion a
reasonable model, the ions will be in thermal equilibrium with the back-

ground gas, which means that all the ion species will have the same
temperature. Therefore, we see that uyD; is equal to qykT. for all ion

species, where “+” refers to the values cornmon to all the ions.. So, we see
that Y(u;/Dj)N; now becomes UkT,Xq;N;. But, from the assumption of
quasi-neutrality, we have Xq;N; = eN, , for positive ions. Therefore, the

momentum equations become

z_ri_&

- 5D
UN,=-Le_He| J D D
X TR

(3-10)

yL.L

- ~D D
VN,=--5+E'—N' 5 D
DIDIN| T, B

D, ' D,

Here, we have defined u,/D, as equal to e/kT, . For singly charged ions, we
note that u,/D, = pyD; precisely. For multiply charged ions, we have

w/D, = wi/(DiZ;) , where Z; is the multiplicity of the charge.

We immediately discover that this form is much simpler than those
based on the assumption of congruence in Schottky's model. The equation
for N; no longer depends on any other ion density. In addition, the equation
for N, does not depend on any particle density at all. In Chapter V we will

see how to take advantage of these relationships to produce analytic
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solutions. We do so for singly charged ions, but note that much of the
analysis would apply to multiply charged ions, as well.

We note that in some instances a similar transformation might be used
to model systems containing negative species. If the electrons are at the
same temperature as the negative ions (as might occur in an afterglow
plasma, for instance), then the arguments given above would apply to the
negative species, producing a similar simplification. We will not go into
these systems in detail. However, consider such a system with a single
positive species, denoted by “+”, a single negative species, denoted by “-”,

and electrons, denoted by “e”. The analog to Equation 3-10 would be

L MeN, %t'%'il;—
VN.=--¢. + e
°" De DeNif po B
D, D.
- fr*_r I
VN.=.L- . &N.D, D, D 3-11)

Here, u/D. denotes both electron and negative ion values. We point out that

this system, although app-aring to be analogous to that described in
Equation 3-10, does have a significant difference. For the system described
in Equation 3-10, the most common source term depends on N, which is
the only negative species. As we will see in the next chapter, that allows us

to find analytic solutions in some cases. Here, N, is not the only negative
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species. That renders the solution techniques of the next chapter less
useful. We will discuss this somewhat further when the analogous cases

arises in the next chapter.

Dimensionless Differential Equations

At this point we will transform the system of equations from the
physical variables to a new set of dimensionless variables. Note that this
will not necessarily result in normalized forms. Normalization is the
process of defining the units by which we will measure a quantity so that
the value of the quantity at some convenient point is 1 . Although this may
make numerical calculations easier, it does not necessarily make the
physics any simpler. When we transform into dimensionless form, we
rescale the quantities to make them all dimensionless. This generally
involves dividing or multiplying them by some number characteristic of the
system. As a result, the scale parameters are of physical significance,
whereas in a brute force normalization they may not be.

Justification for Dimensionless Form. The use of a dimensionless
system gives us several advantages:

1. Simplifies the equations by reducing the number of parameters.

This allows an easier understanding of the underlying structure of

the differential equation system.

2. Replaces the physically observable parameters in the original

equations with parameters that are more significant to the physical

processes occurring in the system. This highlights the most impor-

tant of those processes and clarifies the scaling of the system.

The dimensionless form was found most useful for the present model in

forming and evaluating analytic solutions. For purely numerical solu-

tions, it is often just as easy to use the physical quantities. For this particu-
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lar formulation, introducing dimensionless forms led to a numerically less
stable system. We will discuss that point fu-ther when we discuss numeri-
cal solutions.

Definition of the Dimensionless Variables. First consider the spatial
coordinate, x or r. We divide that coordinate by the distance from the
center of the plasma to the edge:

L[]
W aupe

p
(3-12)
p

The form we choose depends on whether we are using cylindrical or
spherical geometry. Here R is the radius of a cylindrical plasma, and d

the half-width of a planar plasma. This gives us a spatial coordinate that
ranges from p =0 at the axis or plane of symmetry of the system to p =1

at the edge of the plasma.

Next, we consider the particle densities. We define

n =NL? (3-13)
where L is either R or d, depending on whether we have cylindrical or

planar geometry. Notice that the dimensionless particle densities still

satisfy quasi-neutrality:

Y nj=n, (3-14)

NOW, we deﬁne particle current densities:
Y= I.. ] ,4 3-15

Notice that the Y 's do not satisfy congruence, even if the I' 's do. Rather, we

find
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Y, D =%eDe (3-16)

For the source term, we define
S15
s=8L 3-17)

This definition is for the most general form of S . We will define other

quantities related to more specific source terms later. Note that, although

we have
2 5=8 (3-18)
we do not obtain the same result for the dimensionless form. Instead we
see
2 sD; =s.D, (3-19)
We define the dimensionless field as
%=%"—;Lﬁ (3-20)
Finally, we define
He
e s-&=% (321)
D,

Dimensionless Equations. With the definitions above, the dimensionless

equations become (see Appendix A):
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Note that the gradient operator is now with respectto p, not r. We will

maintain that definition when using the dimensionless formulation
throughout the remainder of this paper, unless specified otherwise.

Before we leave these equations, we will exploit the last expression in
Equation 3-22 to recover the well-known Boltzmann relation. First, we note

that, in most cases, D, is several orders of magnitude greater than D; for
any of the ions. This implies that ¥ is much greater than y, for at least one

species. (This is the essence of the small-e-flux approximation, to be

addressed in more detail in Chapter 5.) Since Vn, is of the approximate

order of Xy + Yo , we conclude that y, can be neglected compared to Vn, .

We then express the electric field in terms of the scalar potential and

integrate, to obtain the Boltzmann relation:

Ne = Nooexplet/kT,) (3-23)
The significant conclusion is not the recovery of the Boltzmann relation,

since it is commonly used to describe the electron density in ambipolar
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diffusion plasmas (Tonks and Langmuir, 1929: 883). Rather, it is the limits
of the validity that the new model places on the use of the Boltzmann
relation in describing ambipolar diffusion. The Boltzmann relation is the
solution of the ambipolar diffusion equations for the electron density only in
those cases where the electrons are much more mobile than the ions.
Conclusions

We have now developed a new model describing diffusion in quasi-
neutral plasmas. The fundamental difference between this model and
those based on Schottky’s is the substitution of Equation 3-2 for congruence.
However, even though Equation 3-2 mathematically does not necessary
follow from quasi-neutrality, we find physical grounds for believing it to be
valid in situations where congruence is not. In addition, the model that
results has a form that will prove to make analytic solutions possible in

situations where other models cannot.
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IV. Implications of Proportionality

Introduction

This chapter examines the concept of proportionality and its implica-
tions for multi-ion ambipolar diffusion. We have several reasons to do so.
First, we wish to find conditions under which the assumption of propor-
tionality is valid. Second, we wish to be able to predict the relative scaling of
the number densities for the proportional analytic solutions that we will
develop in the next chapter. Third, we wish to apply those predictions to
finding analytic solutions for systems where proportionality is not neces-
sarily valid.

We will introduce proportionality more formally than we have before,
inu - ag various ways of expressing it. We will then determine a set of
necessary conditions for proportionality to hold, and examine the physical
consequence of those conditions. We will examine some typical plasma
systems, (including the ones we will discuss in Chapter V), and use the
conditions determined in this chapter to explain why proportionality does
or does not hold.

Note that we do not address in this chapter the question of how far a
system can deviate from true proportionality before proportional solutions
no longer provide an adequate description of the system. The reason is that
the main emphasis of this chapter is on analytic solutions. Such questions

are appropriate for the various numerical cases examined in Chapter VI.
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Definitions of the Concept of Proportionality

Proportionality in the most limited usage of this document is the
condition that all the particle number densities have the same spatial
dependence, differing only by a multiplicative factor. More general usages
include proportionality of the fluxes, and of the source functions. Regard-
less of the exact usage, the important concept is that some function has the
same spatial dependence for all the species.

Proportionality is usually defined in terms of the various ion densities
being proportional to the electron density:

Ni(@) = KiNe(T? (4-1)

There are other formulations as well. Those which we found useful in this
research will be discussed in the next sections.

Proportionality for the Normalized Equations. Recall the definition of

the normalized number density:
n=NL3 (4-2)
Since L is a constant, independent of r, we immediately see that a formu-
lation of proportionality exactly equivalent to Equation 4-1 is
ni(p) = Kine(p) 4-3)
This is the form we will use henceforth.

Other Expressions for Proportionality. There are several ways to
express proportionality, which are totally equivalent to the definition given
above. First, let us take the gradient of that definition to obtain

Vni(p) = K;Vn.(p) (4-4)
Mathematically, we know that any functions that satisfy Equation 4-3 must

also satisfy Equation 4-4. Therefore, Equation 4-4 is a necessary condition
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for proportionality. Let us now show that it is generally sufficient, as well.
Note that Equation 4-4 implies

ni(p) = King(p) + C (4-5)
where C 1is some constant, as yet undetermined. However, we note that
the Schottky boundary condition n = 0 at the boundary of the plasma is valid
to a very high accuracy for diffusion-dominated plasmas. This boundary
condition cannot be met for C # 0 . Therefore, we determine that C is
identically zero, and proportionality holds.

From these arguments we see that proportionality of the gradients is a
necessary and sufficient condition for proportionality of the number
densities themselves. Therefore, for a particular situation, if we have
shown the validity of Equation 4-3, we have shown the validity of Equa-
tion 4-4, and vice-versa.

Finally, we will mention another formulation. Since the constant K; is
the same whether we are discussing the number densities or their

gradients, we have

Vaip) _ . _ ni)

Vn,(p) ne(p)

(4-6)

or, equivalently,

Vn.(p) _ Vnip)
ne(a) ni(f).)
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Physical Implications
The conclusions we have drawn so far rely on mathematical manipula-
tion of very general conditions. Therefore, although they are very broad in

application, they also lack somewhat in immediate utility and physical
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relevance. We will now include the results of the model of ambipolar

diffusion developed in Chapter III to produce more useful expressions.
Ratio of the Fluxes. We will develop an expression for the ratio of the ion

flux to the electron flux by first considering the ratio of the gradients again:

Vni(a) -

= (4-8)
Vne(p)

From Equation 3-22 we find expressions for Vn, and Vn; . With those

expressions, Equation 4-8 becomes

4(2%'%)
MR T B
Jﬁ+ne l+¢
(ez{ﬁ‘*?e)
J

l1+¢

-K, 4-9)

With some algebraic manipulation, and taking advantage of the relation-

ship ni/n, = K; , we can simplify this to

_A__K (4-10)

)

F )

Note that this simple form is not due to any simplifying assumptions, but
rather reflects the inherent symmetry of the equations themselves.

With this relationship, we can write

s

=Y 3 411
j

The right hand side of this equation is independent of the varticular ion

species denoted by the subscript i . Therefore, all the 7Y;'s have the same
spatial dependence, or are proportional. Note that this does not imply that

44




the proportionality constant for the dimensionless fluxes is K; , or equiva-

lently, % =KiYe . In order to have y; =Ky, , we would need ¥, =Xy;. In-
stead, we have v, = 2Dyy; .

Since Equation 4-10 is a direct consequence of proportionality, we see
that it is a necessary condition for proportionality to hold. In fact, we can
state that a necessary condition for proportionality is simply for that ratio to
be a constant with respect to spatial variation; if it is not constant, it
certainly cannot be equal to K; .

Note that neither Equations 4-10 nor 4-11 are sufficient conditions: in
deriving them, we used proportionality in the form n;/n = K; to simplify
the equation. This prevents us from reversing the argument to show
sufficiency.

Source Term Proportionality. Expressing Equation 4-10 as
1=K ¥ 4-12)
j
we take the divergence of both sides and then divide to obtain

V%

2V
J

=K (4-13)

Therefore, this relationship is a necessary (but again not sufficient)
condition for proportionality. This is the relationship that is, in fact, the
most useful, for it allows us to determine that proportionality solutions do

not exist for a particular case without knowing the solutions. As before,




Equation 4-13 is still a necessary condition even if the constant is not known
to be ni/n, .

In fact, we will henceforth express Equation 4-13 and its variants using
C; instead of K; , to emphasize that the necessary condition is that the ratio
be a constant, whether we know that constant to, indeed, be K; or not. In
practice, this position is probably overly conservative. However, we wish to
keep in mind that, since Equation 4-13 is only a necessary condition, it is in
principle possible to have a system that satisfies Equation 4-13 and yet is
still nonproportional. Only after we determine the solutions can we verify
proportionality. The importance of Equation 4-13 lies in being able to
determine the allowed form of the proportionality constant before we have

the solutions available to us.

Case Studies of Proportionality for Particular Source Terms
Our emphasis now turns to discovering how the conditions for propor-
tionality we just developed can be used in finding solutions for systems. To

that end, we first define a generalized source term:

V-1 = sk(p) + Qulne,n;) (4-14)
where Qy is a multivariate polynomial in n, and all the n; 's. We note
that here the "k" subscripts refer to either electrons or ions. This source
term can be used to describe any dependence on position, n., or the various

n; 's, as long as the dependence on the n;'s is itself independent of position.

(As an example, if a particular term in Qx were of the form an™, then

neither a nor m could be a function of position.) We refrain from express-




ing Qx more explicitly; since it could include all combinations of all
powers of all the species, such an expression would be extremely cumber-
some. Also, for convenience, we exclude from Qy any constant terms; any
such term could be more conveniently expressed as part of si .

Let us now examine specific cases. We shall come back afterwards and
draw further conclusions, guided by the results of the examples.

Volume Ionization. First, we examine the case where a generalized
volume ionization is the only ionization term present. Then, the necessary

condition for proportionality becomes

Q
=GC; (4-15)
T
J

We will express Equation 4-15 in a different form:
Q_y @-=p (4-16)
G

where we have defined P =3Q; .

Equation 4-16 is equivalent to stating the equality of two polynomial
functions: QyC; and P. In order for any two polynomial functions to be
equal, they must be equal on a term-by-term basis. But, P is independent
of i. herefore we would not, in general, expect proportionality to hold.
As a result, our conclusion is that proportionality generally does not occur
for systerns with arbitrary volume ionization source terms.

This, of course, does not eliminate the possibility of particularly simple
but still physically realistic cases where proportionality may hold. Let us

now consider some of those cases. We will consider a specific example of

the source term above:
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V % = Giehe™! + Z o450 (4-17)
]

where a;x is the rate constant for formation (or loss) of species i due to

species k , m; refers to the dependence of the source term on the electron
density, m;x refers to the dependence of species i on the particle density for
ionic species k , and where k represents either ionic species or electrons.
From Equation 4-13, we know that for proportionality to be a possibility at

all, we must have

-

AV

27
j

=G (4-18)

[}

This leads to

QieDe™ + Y, 0G0

J
=G (4-19)
2. [oxene™ + 3, o™
k j

where k now refers to ionic species only. At first glance it is not apparent
whether this expression allows for proportionality or not. Proportionality
would be possible if each Q; depends on the same species, and has the same
dependence on that species. The simplest such cases are where that source
term depends linearly on n. for each species, which leads to the analytic
volume ionization cases in the next chapter. Such a source term may be

written as

V= finy (4-20)




where f; is a dimensionless ionization frequency defined as viLlei . In

such a case, Equation 4-13 predicts the following relationship between n,

and n; :

n; =2§E ne (4-21)
j
Indeed, the solutions presented in the next chapter give identical results.

Consider next a slightly more complicated system where the source
terms depend on more than one species, but depend on all species in the
same manner. An example would be a system where all ions had ioniza-
tion sources as described in Equation 4-20, and where charge transfer from
one species to another at a rate proportional to the charged particle number
density was present as well. The charge transfer case of the next chapter is
an example.

A typical plasma system, slightly more complicated than the last
example, would be one with volume ionization, depending linearly on n,,
and recombination, proportional to nijn, . Such a system would have the
following source term:

V % = fine - finine (4-22)
Here, f; is the dimensionless ionization frequency for species i, and fy is the
dimensionless recombination rate for species i. For proportionality to hold,
all ion species must have this dependence, and furthermore, the ratio fi/fs
must be the same, regardless of species. We find this highly unlikely, and
in fact would not expect proportionality to hold in any such system.

External Ionization. In this case, we have the following form for the

continuity equations:
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V % = si(p) (4-23)

Then, the necessary condition for proportionality becomes

Cj=—3_ (4-24)
2
)

Here, the determination is straightforward. Again, we can rewrite this as

si=C,-z sj=C;s (4-25)
]

where 8 = Xs; . This says that, for proportionality to be possible, the sources
themselves must be proportional. If they are, proportionality may indeed
occur, with Kjequal to C; given by Equation 4-24. In the next chapter we
will find the general solution for the particular cases of planar and
cylindrical geometry with the sources proportional, and show that the
solutions are proportional also. Here, we have shown that at the least the
proportionality is possible as long as the sources are proportional, inde-
pendent of geometry.

External and Volume Ionization. We will consider a source term that
includes both the self and external ionization sources described before. The

resulting expression for the necessary condition is

C= si(p) + Qi (4-26)
2 5P +Q;
j
or
sip)+Qi=Ci(S+P) (4-27)

where S and P are as defined previously. Again, we see that the source
terms for each species can differ only by a multiplicative constant, or

proportionality cannot hold. Such a condition is extremely unlikely to be
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met: even if proportionality holds for the s's and Q's individually, it is
unlikely that the ratio s/Q would be the same for all species.

Using Proportionality to Determine Solutions
Next, we wish to see how to use our results on proportionality to find
solutions. The rationale for the assumption of proportionality by previous
authors was to describe multi-ion ambipolar diffusion in cases that could
not be described otherwise (See, for example, Oskam) (Oskam, 1958:368).
For systems that involve electrons as the only negative species and ions all
at the same temperature, we can now state with certainty that it is no
longer necessary to make an a priori assumption of proportionality.
Instead, we can divide all such systems of interest into three areas.
1. For some systems, we can find analytic solutions without having
to assume proportionality. Examples of such systems include
external ionization where the spatial dependence of the ionization is
the same for all species, and simple volume ionization.
2. For some systems, we can show that the solutions are not propor-
tional. Examples of such systems are investigated in the Chapter VI
by means of numerical solutions.
3. For some systems, we can show that proportionality is possible,
and can then use that possibility to investigate possible analytic
solutions. The charge transfer case of the next chapter is an exam-
ple. There, we used Equation 4-13 for two purposes. First, we used it
to determine that proportionality was at least possible. Second, we
used it to determine the constraints on the possible proportional
solutions.
Multi-ion Ambipolar Diffusion Coefficient

We now have sufficient information to verify an often-used form of an

ambipolar diffusion coefficient for proportional systems (for example,
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Brown: 1966, 68). Substituting the momentum equation for electrons into

Equation 4-4, and with the approximation % >> v, we find:

Vn; =KiVne =- K,(ﬁ)z % (4-28)
J

The approximation is based on the common condition p, >> e and will be

discussed in more detail in the next chapter as the “small-e-flux approxi-

mation.”

We use Equation 4-11 to evaluate Yy;, producing

Vni= -K{-€\4 - € 4-29
i K41+e i 1+e)‘i ( )

Expressing this relationship in terms of the physical variables and rear-

ranging terms produces

ry =- VND{1+7¢) (4-30)

This is equivalent to defining an individual ion ambipolar diffusion

coefficient as
T,
Dy = D{u—e) (4-31)
T,

From this expression and congruence (which holds for one-dimensional
proportional systems, among others), it is straightforward to show the
validity of the following definition of an ambipolar diffusion coefficient for
the electrons:

Das = 2, KiDyj (4-32)
3
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Note the implications of these expressions: first, for proportional systems
where the small-e-flux approximation holds (that is, where the electron
mobility is much higher than the ion mobility), ambipolar diffusion
coefficients can be defined for each ion species that depend on the free
diffusion coefficient for that species only, and second, the momentum
equation can be expressed as Fick’s first law, for both ions and electrons.

Because of the lack of a usable model of multi-ion ambipolar diffusion,
previous usages of the diffusion coefficients defined in Equations 4-31 and
4-32 did not clearly state the limits of the definition. For instance, Brown
gives the equivalent of Equation 4-31 but never discusses that it applies only
for proportional systems, and only for cases where the electron mobility or
diffusion coefficient is much higher than the corresponding ion value. In
addition, although his definition of the electron ambipolar diffusion
coefficient correctly describes it in terms of weighted sums of the ion
coefficients, he is unable to provide values for N;/N, (Brown, 1966:67,68). As
a result, his expression is of limited utility compared with Equation 4-32,
which evaluates N;/N, explicitly.

Summary of Results

Consider a multidimensional "source space” consisting of all possible
source functions. Somewhere contained in that space is the subspace of
sources that produce proportional solutions. We now have algorithmic
methods for determining bounds for that subspace. In some cases we can
find the fluxes and determine that such cases are proportional. However,

even if we cannot find the fluxes we can often still make determinations of
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limits on that subspace from the behavior of the source terms. In particu-
lar, we can generally determine the limits without knowing any more than
the source terms themselves. This allows us to clearly determine that a
particular system or class of systems will not produce proportional
solutions, without needing to find the solutions first. To summarize our
results more precisely:

1. An necessary condition for proportionality, is

Vn;

Vn,

-K; (4-33)

For any system for which the Schottky boundary conditions are a
reasonable choice, the condition is sufficient as well.

2. For those systems which contain electrons and positive ions only,
and for which the Schottky boundary conditions are a reasonable
choice, a sufficient condition f.. proportionality is

V-yi

2 Ve

i

=K (4-34)

3. The only non-pathological cases where proportionality will occur
are either those where the only ionization source is an external
source, and that source is proportional, or where the only ionization
source is generalized volume ionization, with all terms having the
same dependence on the number densities.

4. In systems involving positive ions only, if an analytic solution
exists, either it can be found without assuming proportionality, or the
form of the source term can be used to show that proportionality is
allowed and what the constant of proportionality must be.

5. For proportional systems where the small-e-flux approximation is
appropriate, ambipolar diffusion coefficients can be defined that

allow formulation of the problem in terms of Fick’s first law, with D
not a function of position:

'=-DVN (4-35)
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V. Analytic Solutions to the Model

Introduction

In this chapter we will discuss various analytic solutions of the model
developed in Chapter 3. We will emphasize several features of the model in
finding those solutions. First, we will demonstrate the advantages the
present model has in being able to obtain analytic solutions where other
models cannot. Second, we will show that those solutions are consistent
with our physical understanding of plasma discharges. Finally, we will
use the solutions to confirm the predictions about proportional discharges
that we made in Chapter IV.

We emphasize analytic solutions for several reasons:

1. They allow us to describe a wide variety of plasma conditions in a

single expression. This lets us see clearly the effect of changing the
parameters in the system.

2. They allow us to see the underlying physics of the system more
clearly.

3. They allow us to develop solutions more easily, using less time.

This allows us to rapidly examine a number of different physical
situations.

Definition of Cases of Interest. First, we will define the cases we wish to
examine. Those cases will be defined by variations in two regimes;
geometrv and type of source. In addition, all the systems have certain
characteristics in common; none of them contain negative ions and they all
are systems where all the ions are at the same temperature.

Geometries. We will examine two different geometries. The first will

be planar geometry. Cases examined using this geometry will consist of
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one-dimensional systems, with a plane of symmetryat r = 0 . In such

systems, we need only examine one side of the system; we will choose

positive values of p . Therefore, we end up with a rectilinear coordinate
system, with the only variation being along the p axis, with the plasma
confined in the region -1 < p < 1 , and where we look only at the region

for p > 0 . We shall call such systems "P" (for planar) systems.
The second geometry we will examine is cylindrical. We will examine
axi-symmetric systems, with no variation with z. The normalized coor-

dinate p corresponds to the radius from the axis of symmetry. The

plasma again consists of a one-dimensional system, confined to the region

0 < p <1 . Weshall call such systems "C" (for cylindrical) systems.

Sources. We will look at two possible ionization sources. One will be

external. The p dependence of the external source term is unrestricted,
however it is independent of any species densities:

V- = s(p) (5-1)

Although the normalized source function s depends on the diffusion

coefficient D as well as the actual source function S, our intent here is to

examine cases where the spatial dependence is caused by variations in S,

not D. Including spatially varying Ds would require additional terms in the
momentum equations. Such terms are not addressed here.

We will address very general external sources, includin; formally

solving the system in many cases. In particular, we will find analytic
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closed-form solutions for uniform external ionization (designated as "X"),
and for a particular double-exponential source (designated as "E").
The other ionization source represents a generalized form of ionization

due to the charged species:

Voy= Qx(ne,ny) (5-2)
Here, Qx represents a multivariate polynomial in the electron density n,,
the various ion densities n;, and (through the appropriate definition of the
coefficients of the terms in Qx) the neutral number density. Clearly, this
formalism can accommodate any dependence of the ionization rate on the
various particle densities. In addition, the formalism could be easily
extended to include dependencies on neutral species, such as excited
species, by adding them as addition variables in Qx , and including the
appropriate continuity and momentum equations.

Chapter IV used the full formalism in discussing proportionality. The
cases discussed here will be those where there is only a linear dependence
of the generalized ionization on n. Such cases are designated by "V",
identifying an ionization dependence on n, only, and "T" when charge
transfer is present as well. For brevity of discussion, such sources will be
referred to as volume ionization sources. Granted, this is not a completely
standardized definition. However, we know of no accepted term that can
refer to all possible particle density-dependent sources.

Boundary Conditions. The dependent variables in our system of
equations are the particle densities and fluxes. Each of these is determined
by a first order differential equation. Therefore, each needs a single boun-

dary condition. The boundary condition for the fluxes is determined by sym-
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metry, and by the fact that they are vector quantities. That boundary

condition is that these quantities must be identically zero at the center of the

system, where p = 0. There are a number of realistic boundary conditions

appropriate for the particle densities. The common choice of n(1) = 0 will be
used. To a very good approximation, this is the appropriate boundary
condition for a completely absorbing boundary (Cohen and Kruskal,
1963:921. Phelps, 1990:414). The choice of this boundary condition versus
more realistic ones amounts to displacing the boundary by a small amount
(See, for instance, Allis and Rose, 1954:84).

Small-e-Flux Approximation. We will provide a summary of all the
solutions momentarily. Before that, however a discussion of the small-e-
flux approximation mentioned in Chapter IV would be appropriate. This
approximation states that the normalized electron flux is much smaller
than the total normalized ion flux. In addition, whenever the small-e-flux
approximation is valid, a similar approximation for the source terms will
be valid also. The term “small-e-flux approximation” will be used indis-
criminately (albeit somewhat simplistically), to refer to all of these approx-

imations. They can be stated as

Se <1 (5-3)




where s can refer either to a generalized source or a specific external
source function, and f refers to the dimensionless ionization frequency for
the V or T cases. Nowhere does the validity of the model developed in this
paper depend on these approximations. However, they are very well
justified, and they allow simplification of a number of expressions. This
allows us both to obtain a better understanding of the essential physics, and
also to more easily make a number of numerical order-of-magnitude
estimates.

We will not show the exact justification for all three assumptions. All
three are based on the fact that both the fluxes and the source terms are
normalized by factors of 1/D. Since D, is much greater than D; for any ion
(typically by several orders of magnitude), the normalized electron quanti-
ties are much smaller than their ion counterparts. We will examine the
flux case in detail.

Let us consider the justification of the first approximation:

Ye
2%
J

The definition of the normalized flux produces

<<1 (54)

Lo e
‘YQ = DQ < De (5‘5)
z LIS 3] > I
LI
which simplifies to
max D

i

J —e
v D xh
J




But, congruence implies

Te _1 5-7)
2h
J

(In fact, since we only need Equation 5-6 to hold for the magnitudes of the
fluxes, strict congruence is not even necessary. Quasi-neutrality is
sufficient to justify the relationship.)

Hence,

max D
Xt e

i

For typical plasmas, D; is on the order of 100 cm? s ! or less, while D, is
in excess of 10 cm?s ! (von Engel, 1965: 140, 141). . As a result, in almost
all cases D, >> D; . Therefore, we see that
max D

J
De

Y

<
%

<<1 (5-9)
j

which proves Equation 5-4. Exactly similar arguments are used to justify

the other two assumptions in Equation 5-3. The only difference is that

charge conservation ensures that the relationship aralogous to Equation

5-7 will hold true, instead of congruence.

Note that Equation 5-9 is based on the electron diffusion coefficient being
much higher than the ion diffusion coefficient, or equivalently, the electron
mobility being much higher than the ion mobility. Therefore, the small-e-
flux approximation is equivalent to assuming that the electrons are much

more mobile than the ions. It is not equivalent to assuming that the ion
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temperature is zero, or that the ions are immobile. On the other hand, D is
proportional to T . Therefore, assuming that the ion temperature is zero is
trivially implies D, >> D; .

The small-e-flux approximation is often invoked, although not as
explicitly as in this document. For instance, Tonks and Langmuir assume
the Boltzmann relation for the electrons and electric potential (Tonks and
Langmuir, 1929:883). As was pointed out at the end of Chapter III, the
Boltzmann relation correctly describes an ambipolar plasma only when the
small-e-flux approximation is valid. Therefore, Tonks and Langmuir’s

work relies on this approximation.

Summary of Solutions

Before we go into a detailed explication of the solution methods and the
resulting solutions, it would be helpful to present a summary of the solu-
tions themselves. Note that they are in the simplified form that results
from the use of the small-e-flux assumption. In this summary, we do not
present the moment or continuity equations appropriate to the solutions.
Rather, we save those for the complete development of the solutions, later in
the chapter.

We will now describe each of the solution sets, starting with the external
ionization cases and then continuing to the self ionization cases.

External Ionization. In these cases we assume that the only source of
ionization is an external ionization, imposed by some mechanism outside
the plasma. This ionization is completely independent of any phenomena

occurring inside the plasma.
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PX. First, we have the PX case; planar geometry, uniform external

ionization only:
— £
Zl+e) 2 %

1-p2
A1+¢)

Y=8p

__2
(1-p2e

nj = €8

(5-10)

PE. The PE case combines planar symmetry with external ionization
decaying exponentially from each boundary. Examples where this might

arise include a time-averaged description of planar RF reactors, where in

the so-called y regime secondary emission produces beams of high-energy

electrons from each electrode (e.g. Godyak and Khanneh, 1986), nr cases
where photo-ionization from each side provides the ionization source. (We
note that, to model the RF reactor with complete fidelity, we would have to
account for the presence of the high-energy electrons in satisfying quasi-
neutrality near the boundary, where n, is small. However, for the present
case we will assume that the secondary electron emission coefficient is
small enough, and the beam electron velocity high enough, that the particle
density due to the high energy electrons can be neglected.) For this case, we

find the following solutions for the small-e-flux approximation:




€ 2 8
n, = ———(cosh A - cosh Ap)
AA1+e)
nj=——= — (cosh A - cosh Ap)
ATY sfl1+€)
i
(5-10)
vy=4& ginh Ap
A
sinh Ap
(cosh A - cosh Ap)

E=A

CX. Finally, we have the CX case, which combines cylindrical

geometry with external ionization:

1-p?
= € :
e = L1+e) ?’s’
e
n,-41+e)es.
(5-11)
=50
=3
__ %
(1-p2e

Volume Ionization. In these cases, the ionization source for both
species is single-step impact ionization by the electrons in the plasma. We
assume that the ionization frequency is constant throughout the plasma.

The solutions below would have the same form, with or without the
small-e-flux approximation being applied to the dimensionless frequencies
f. The various f's only appear in the definition of the eigencondition that is
produced in all these solutions. The approximation produces slight

changes in the values of the various s, but does not otherwise change the
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eigencondition. As a result, we see no change in the structure of the

solutions.

PV. The PV case involves planar symmetry, with volume ionization:

ne=n0008“1>

.-Z ocosTp
J

=2 i
Y xfno sm%p

ij

ft(1+e)

(5-12)

tanﬂp

CV. We refer to the cylindrical geometry, volume ionization case as

"CV":
ne = ng Jo(hop)

=—1—noJ o(Aop)
PR

j

(6-13)
Y=ng -{J 1(Aop)

Y f
__ J J1(Aop)
M1+ €) Jo(hop)

where Ao is the first zero of the Bessel function Jg .

PT. Finally, we have the PT case, with self ionization and charge
transfer. In this system, species 1 gains by charge transfer from species 2,

plus all species have ionization sources proportional to n,. Formally, the
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solutions are similar to the PS case, except with a different definition of A
and a slight difference for the n;'s:
ne = nooosgp

nj = K,-nocos%p
2 (5-14)
y=% fng sm%p

=2y ¢
‘E_ujzgtangp

We will point out the difference in A and describe "K;" when we discuss

this solution in more detail, later.

Exact Solutions

Next, we will develop the complete solutions, starting with the formal-
ism for arbitrary external or volume sources, and continuing to exact
solutions for a number of cases. We will also describe the implications of
the solutions, as each solution is discussed. We will start with the external
source cases, and then continue with the volume sources.

External Sources. We will examine arbitrary external source functions,
in both planar and cylindrical geometry. We will first obtain a general
form for the solutions, then examine sources that are proportional (in the
same sense that Oskam defined particle densities as being proportional),
and finally solve the system for particular external sources.

Planar Geometry. Consider the continuity equation in planar

geometry, for an arbitrary external source term:

511




N _ s(p) (5-15)
dp

Here, the lack of subscripts implies that this equation is valid for any
species.
Immediately, we see that the solution for the particle flux densities is

given by

p
y= f s(p')dp' (5-16)

When we use this expression in the electron momentum equation, we
obtain the following form for the electron number density:

P
pl

(Z 8(p") + &(p"))dp"
j

Ne = - Toe —dp (5-17)

The formal integral expression for n; then becomes:
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0
: (5-18)
/ p
o
(2 8(p™) - s,(p'"))dp'”
J
X ex% - 0 —dp" dp'
P o
(ez s;(p"")+s,(p""))dp""dp"'
j

0
p

In general, this form is not integrable. However, let us consider sources of
the following form:
sk(p) = skg(p) (5-19)
That is, we will consider proportional sources. This is a fairly reasonable
restriction. For instance, consider a situation where the background gas
mixture is homogeneous, and an same external source of high energy
electrons is providing the ionization for all species. If the electron energy is
high enough so that differences in ionization potential can be ignored, then
the ionization rate is a function of total beam intensity. In such a case
conditions such as Equation 5-19 would be true. That produces the follow-
ing form for ne:
eZ 8j+8e P 0
Ne=- ——— f g(p™dp"dp’ (5-20)

1+¢ 0
1
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This solution can then be used to obtain the following solution for n; (see
Appendix B for details):

ez 8;+8e P

p
nj=-—i 1 I g(p'Hdp'dp’ (5-21)
. 1+€
s 0
j 1

We will not present the expression for £ at this time. It is too complex to

be worthwhile for such a general case. Instead, we will wait until we

examine specific cases. However, note that the general definition of E in

terms of n, and 7y still applies.

PX Case. As an example of a particular proportional external
source, we shall first use a uniform external source, with
sx(p)= 8y (5-22)
This is the case referred to earlier as "PX". This source produces the
following solutions for the fluxes:
Tk = SkP (5-23)
For n, , the result is

eZs,~+s,

-] .02

And for n;,

EZ 8j + 8,

n; = 5 (1-p%) = —&in, (5-25)
8'22 s 1+€) ) Y s
j

j
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From these, we obtain the following expression for the normalized electric
field:
(2o
20 \j

k= (l-pz)(ez s,-+s,)

(5-26)

The small-e-flux approximation produces the following forms for the

solutions ( vy is unchanged):

1-p2 :
nj==—b—es=—3n, (5-27)

Let us consider some of the implications of these solutions. For conve-
nience, we first examine situations where the small-e-flux approximation
is valid.

First, consider the particle fluxes. The plasma has no volume losses.
Therefore, the fluxes depend only on the external source. Since the
external source is not linked to the species densities, the fluxes are also
independent of these densities. For this system, with the fluxes all zero and
therefore equal at the axis, congruence holds despite any changes in the
plasma conditions. This result is the same for the physical fluxes or the
non-dimensional fluxes.

Next, consider the expression for the physical field, E:
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= kT = D
E (—k—id%ﬂ) = (—R—sz_xz)uo (5-28)

The electric field depends only on T, not on T; or the source terms. This
should not be totally surprising, and in fact is identical to the results
obtained from a single-ion ambipolar model. From the results on the multi-
ion diffusion coefficient presented in Chapter IV, or from similar results
from Schottky’s definition of D,, it follows that the field increases the field-
free ion flux by a factor of Do/D; = (1+T/T;). At the same time it reduces the
field-free electron flux by a factor of approximately Do/D, . Even though D,
is larger than D;, D, is so much larger still that the field-induced change in
the ion flux is still much smaller than that of the electron flux. The field
serves to constrain the electron flux to match the ion fluxes, but has little
effect on the ions, at least in those regimes where the small-e-flux approx-
imation holds. See, for example, Phelps, who discusses the fact that the
electron diffusive and field-induced fluxes balance each other (Phelps,
1990:412). This implies that the field produced is determined by the electron

properties, not the ion properties. The field necessary to constrain the

electrons depends on the ratio of u,, which determines how well the

electrons respond to the field, to D,, which determines how well the
electrons respond to diffusive forces. But that ratio is q/kT,, and is deter-
mined solely by the electron temperature.

Finally, consider the particle densities. The field is proportional to T, ,
and the fluxes are independent of the plasma characteristics. VN can be
expressed as approximately N/A , where A is the scale length of the dis-
charge. Recall the momentum equation with the electric field still includ-
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ed: I =-DVNuNE . With a fixed I', if the field goes up, VN and N must go
down. This implies that N varies as some increasing function of 1/T, .
Measuring T, in units of T; produces N varying as & , consistent with

Equation 5-27.

In addition, N depends on s which is equivalent to the ratio S/D. This is
not surprising; number density should increase as the source strength
increases. Furthermore, increased values for D imply higher diffusion
losses. Therefore, N should decrease as D increases.

These results are exactly equivalent to the results from the single
species theory of Schottky, as applied to this system, with the exception that
Schottky's theory, which deals with only a single species, cannot address
the relative magnitude of two species. In addition, they are the same that
would result from applying Oskam's model to this physical situation. Note
the significant difference, however; Oskam had to assume proportionality
to find any solutions. We found the solutions, and then showed that they
were proportional.

Changes occur when the small-e-flux approximation is not invoked.

There are no significant differences for y or n. However, there is a signifi-

cant difference in the electric field. Consider the full expression for E:

3. &
E= 7 2)“2 i B 2 D:; (5-29)
SN

Expanding the last terms in the right hand side and dropping terms second
order and higher in S,/D, produces
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Although there is a change in the form of E, it is small. The second term is

@)

of the form 1-3, where 5 is dominated by the ratio Dj/D,. This ratio is

typically so small that § << 1. As a result, the additional dependence on T;,

the sources, and the diffusion coefficients is only a perturbation to the
expression seen in the small-e-flux case. This higher order effect is due
primarily to the fact that the we are now taking into account the ions’
response to the field. With the small-e-flux approximation, we neglect that
response. In most practical cases, this higher order effect is insignificant.
As will be shown in the next chapter, D;/D, is typically of the order of 10 or
smaller, and the second and higher order terms can be ignored.

PE Case. As another example, consider a case where the external
source of ionization is introduced from both sides of the plasma. This
might arise with photo-ionization from sources on each side of a planar

discharge. It could also arise in a transverse e-beam pumped discharge

using dual opposed e-beams. Another example would be a y-regime RF

discharge. The electrons, produced by ion secondary emission at each
electrode, are accelerated in the large sheaths generated. In some pres-
sure regimes, the ionization produced by these electrons become the major
ionization source for the discharge (Godyak and Khanneh, 1986).

The resulting source function is the sum of two exponential decays, and
can be described as
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M = Skcosh(Ap)
op

(5-31)

where 1/A represents a dimensionless decay length and is the same for

every species. The k subscript explicitly denotes any species, to distin-

guish the species-dependent quantities Y and s from the species-

independent quantity A. That definition produces

* = ZXsinh(Ap)
A

Ez Sj+8e

Ne = ———~(cosh(A) cosh{Ap))

A2(1+e)

ez 8j+8e

{A2(1.+e), 28} —{cosh{A}cosh{Ap))

A(Z Sj-se)sinh(/\p)

E= (ez s,-+s,}cosh(A)—cosh{Ap»

The small-e-flux approximation implies
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% = Xginh{Ap)
A

e, 8
n, = 2(—-(cosh(A) cosh{Ap))

AT1+€)

J——(cosh(A) cosh(Ap)) (5-33)
AZ( 1+€)
=S8 n,

28:

Asmh(Ap)

E(cosh(A)-cosh(Ap))

Except for the different dependence of the source term on p (which leads

both to the presence of the A and A2 terms, and to the cosh and sinh depen-

dencies), these solutions are equivalent to the PX case. Therefore, the same
discussion of consequences of the solutions applies.

These results can be compared to Godyak and Khanneh’s work directly
(Godyak and Khanneh, 1986). These authors are examining an RF plasma
reactor in the regime where ionization by the secondary electrons emitted
from the electrode at each end of the discharge are a significant portion of
the total ionization of the system. They derive an ionization function for the
beam electrons that is identical in form to Equation 5-31, and also include
volume ionization by the electrons in the plasma, all for a single ion
species. They address both the radial and longitudinal diffusion. Their

solutions for the longitudinal diffusion, in the case where the volume
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ionization is negligible compared to the beam ionization, have exactly the
same form as the single-ion version of Equation 5-33.

Cylindrical Geometry Now, let us repeat the analysis of external
sources for a cylindrical geometry. Again, the source term depends only on
position. However, the cylindrical geometry introduces some changes. In

that geometry, the continuity equations become

Yo ) (5-34)
P ap
The solution for the fluxes is
P
Y= ‘J;I p's(p'Mdp' (5-35)
()}

This differs from the planar case by a factor of 1/p before the integral and a

factor of p' inside the integral. This produces the following form for n,:

;
I U I W ' Mdo"do"
ne=- ol Lf o [ejZSJ(p )+ adp )]dp dp (5-36)

0
1

Again, these formal solutions produce the formal solution for n;:
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P

;
m=- lj s{p"Mp"

p'o
1 (5-37)
- A
o
pv-~(;qp~-)-qp-~))dp---
X exp 1” JO ﬁ’.ip" dp'
P p"
rP
o "””(eg'SiP"")+se(p""))dp""dp"'
Jo
e p _

As in the planar case, this expression is, in general, far from integrable.

However, assuming proportional sources produces

sup) = sxg(p) (5-38)
The results are the following forms for the particle fluxes:
= j l- "e 1" 'ld ] (5”)

1
Another algebraic manipulation, essentially equivalent to that described in

Appendix B, produces the following form for n;:
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Caul

o
n; =-_i_13ﬂ_1+;- E’Lf p''glp'dp"dp’
0

] 1

.
2

(540)

The exact form for the electric field is readily obtainable, but again it does
not seem worthwhile to present it in such a general case. Instead, we will
look at the field in the example presented next.

CX Case. Consider the specific example of uniform external

ionization. This leads to the following form for the particle fluxes:

Y= gp (541)

Notice that this differs from the PX case only by a factor of two in the
denominator. The momentum equations have exactly the same form as for
the PX case. Therefore, the factor of two difference in the fluxes carries

throughout to produce

ez Sj + S¢
fe = J4( 1+¢) 1-¢7)
EZ 8j + Se
j (1-p2
4y s{l+e) )
J
.
.E_ 29 J

-(1-92)(62 s,-+s.)

J

The small-e-flux assumptions gives
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__Jd a2
n°—4(1+e)1p)
. - Qe -n2
= st )
(5-43)
Y=§p
£-_2

d1-p%)

Once more, the conclusions of the PX case apply here.

General Self-Ionization Sources. Next are three cases where the only
ionization term is self ionization. We will first approach the solution using
a very general formulation. This general formulation will help determine
the bounds of practical application of the analytic method. The less general
examples that follow still produce results of broad utility.

First, assume a source term as follows:

V % = Qu(nens) (5-44)
Here, the "k" subscripts refer to either electrons or ions. Q is a general
polynomial in its arguments n. and n;, in the sense that it can include not
only powers of those arguments, but products of those powers as well. For
example, ordinary electron impact ionization produces a source term that
depends linearly on n, , but depends on no other species. On the other
hand, recombination adds a source term (that is actually negative, and
therefore a loss term) that depends on the product of the electron density

and the appropriate ion density:

V % =fin, - fynen; (5-45)
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Here, the first term on the right hand side represents electron impact
ionization, and the second represents recombination.

The formulation using Qy is sufficient to cover every case of interest
where the ionization rate depends only on the number densities of the
charged species. This formulation was used in Chapter IV in the discus-
sion of proportionality, and will be used it in Chapter VI in the discussion
of numerical solutions. Unfortunately, sources of this form, other than the
very simplest, do not lend themselves to analytic solutions. Therefore, for
the present we shall consider only electron impact ionization, and will look
only at loss terms that are also proportional to n.

Planar Geometry.
PV Case. In planar geometry, and with electron ion imoact
ionization as the only source, the continuity equation is
% = fn, (546)

Here, f is a normalized ionization frequency given by f = vd¥D , where d is
the half-width of the discharge.
The momentum equation for electrons is

E) ¥+ e
i

one
=- 7
ap 1+¢ (5-47)

Taking the divergence of this equation, and substituting the expressions for

dy/dp from the continuity equations, produces

ey i+,

e 3 (5-48)
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Defining
e fi+f
2 J

Az ——— (549)
1+¢

Produces the following expression for n,:

a_ﬁ)i + ),211‘ =0 (5-60)
op2

This has, as its most general solution,

n. = a cos Ap + b sinAp (5-51)

where the values of tte a and b are chosen to meet the boundary conditions.

With an exact form for n,, 7 isgiven by
y=f :sinkp + -:cosxp (5-52)

The boundary condition ¥(0) = 0 implies that the coefficient b must be
zero. That value plus the condition that n(1) = 0 implies that either a is
zero, or cosA is zero. But, to this point A is determined by the properties of
the plasma, not the solutions to the differential equation. Therefore, in the
general case cosA is not zero. Thus, b is zero, and the only solutions is the
trivial solution.

The answer to this apparent dilemma is that the value of A is not really

independent of the differential equations. The requirement for physically
meaningful solutions forces n. to have a non-zero value somewhere.
Assume that the non-zero value occurs at n,(0) = 1. For M separate ion

species, the M+1 continuity and M+1 momentum equations form a system
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of 2M+2 first order differential equations. Each of the M+1 fluxes has a
boundary condition of Y(0) = O . Similarly, each of the M+1 number

densities has a boundary condition n(1) = 0 . Finally, the assumption above
provides one addition boundary condition. The result is a system of 2M+2
first order differential equations with 2M+3 boundary conditions. This over-
constrained system constitutes an eigenvalue problem that has solutions
only for particular values of the parameters.

From a mathematical standpoint, any non-zero value at any position

other than p = 1 would suffice. From a physical standpoint, of course, the

value for n,(0) represents the on-axis electron number density and is
determined by the interaction of the longitudinal electric field and the
external circuit parameters. The existence of the eigencondition enforces a
particular value for the ionization frequency, and hence for the eiectron
temperature. On the other hand, the external circuit parameters enforce a
particular value for the longitudinal current. To accommodate both of

these enforced values, n.(0) will change until the longitudinal flux, given by
nepE, is appropriate for the total longitudinal current. For the particular

case at hand, the value is truly arbitrary, but must be positive.
A number of different but related quantities could be chosen as the
eigenvalue. Because of its explicit appearance in the differential equations,

we chose to use the electron temperature, kT, . All the ionization frequen-

cies depend on the electron energy distribution, and A depends on the

ionization frequencies. For Maxwellian distributions, the distribution is

characterized by the electron temperature kT, . Therefore, adjusting the
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value of kT, allows non-trivial solutions. Equivalent operations could be
performed for more complicated electron energy distributions, but without

the simplicity of a single parameter.

In general, there are a number of allowable values for A ; ©/2, 3n/2, and

so forth. Expressing the solution as a sum over all the possible values of A

produces what amounts to a Fourier expansion of the solutions, with each

value of A representing a different diffusion mode. This analysis examines

only the simplest mode, the so-called fundamental diffusion mode. For that

mode, the boundary conditions force the following value for A :

=k
A 5 (5-53)

This produces the following expression for ne:
ne = neocosg-p (5-54)
Here, neo had the value of 1 in the example above.

In fact, this eigencondition determines the electron temperature in
plasmas that depend on self-ionization. We will return to this point later,
while examining numerical solutions. At that time, we will show that the
present model gives results that are consistent with Schottky’s model of
single ion ambipolar diffusion.

Various authors have treated the eigenvalue nature of this system. For
a good review, see Ferreira (Ferreira et alia, 1988). Note, however, that
Ferreira claims his system must have two eigenvalues. One of Ferreira’s
eigenvalues is indeed forced by the physics of the situation, and is in fact the

same as we use here. However, the other is a consequence of Ferreira’s
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normalization. Ferreira uses the electron number density n, as one of his

two dependent variables. For the other, he uses a , defined as the ratio of

the negative ion density n, to n, . He then normalizes the electron density,

defining go = n./neo . He also normalizes his ion density ratio by defining

g. = a/ao . In both cases, he is dividing by the on-axis value of the variable,

thus setting the value of the normalized variable on axis to 1. The result is

the following normalized system of differential equations:

dge) _
X ax X(1+(loga}—i +Age =0

(5-55)
xaogai MP-Qutogalge = 0

Xd

This is a system of two 2nd-order ordinary differential equations, which
would ordinarily require four boundary conditions. In this regard it is
equivalent to the system of two continuity and two momentum equations
that we are using. In addition, the normalization conditions force two
additional boundary conditions: g,(0) = g¢(0) = 1. The condition on g, is
exactly equivalent to the eigencondition used here. The condition on g, is a

consequence of the normalization of g, . Note that g, never appears in the

system separate from o9 . The combination could be replaced with the
single function a(X) with no change to the same system. The only differ-

ence would be the loss of the boundary condition on a . This would remove

Ferreira’s second boundary condition.
This does not imply that the condition forced by the normalization is not
a consequence of the physics of the situation. Rather, Ferreira’s normal-

ization changes the on-axis ion density from a consequence of the solutions
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into a requirement for solutions to exist. The present choice of boundary
conditions and normalizations allows the value of the on-axis densities to

appear as a natural consequence of the system.
The eigencondition on A quickly produces an expression for v for the
electrons and each of the ions:
Y= fn,o%sing-p (5-56)
For the ions, the momentum equation produces the following solution for

the fundamental mode:

n; = 25; neo coslp (5-57)
j J
The electric field is given by
Z5
£=k12——1¥-tan§p (5-58)

Notice that we still have not determined f;. However, the original

definition of A and the requirement that A = /2 together imply

ey f+fe
(lztf = —‘3:;:— (5-59)

This single constraint is not sufficient to determine each f; ; it only con-
cerns the sum of the frequencies, not each individual one. Other expres-
sions must be found to relate the individual frequencies to each other. In a
real discharge, those expressions involve the ionization potential and cross-
section for each species. Given the form of the electron energy distribution,

the potential and cross-section are sufficient to uniquely determine the
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ionization frequency associated with a particular electron temperature.
This approach is exercised in Chapter VI when examining the tempera-
ture dependence of a Ne/He plasma. Presently, we will make some simple
assumptions that will allow us to continue, while still modeling fairly
realistic situations.

First, we will assume

Vi=SVg=Vg=Vg=.- (5-60)
for all ionic species.

Second, we make the small-e-flux approximation. Doing so allows
simplification of the form of the eigencondition. The error this introduces
in the final solution is negligible; because of the vastly different ion and
electron mobilities, the small-e-flux approximation is valid for any system
with kT, 2 kT;. It does not change the form of the particle or fluxes at all.

In fact, the only expressions that change are those for the normalized field

and for A, which become

f
=2 2 tanfp
Z;_nzj:1+e 2
(5-61)
€Y, f
@ _J
(2)2 1+¢

Using the relationship in Equation 5-60 and the definition of the dimen-
sionless sources to determine the relationship of the various f;’s, substitut-

ing that relationship into the second half of Equation 5-61, and solving for f;

produces




f;=_&2___ (5-62)

e4Dy; 1
25
We can then use conservation of charge, which implies that v, is equal to

2v; to determine f, :

2 D,

_
fo= D. (5-63)

We then use the values for f; and f, to evaluate the solutions.

These results are analogous to the results Schottky's theory produces for
the equivalent single-ion case. In fact, Equations 5-54 and 5-56 are identical
to the dimensionless form of the Schottky solutions for a single ion plasma.
Furthermore, Equation 5-57 is identical to Schottky’s result for the ions,
except for the normalizing factor n;/In; , which reduces to the value
identically 1 for the single ion case. The eigencondition expressed in

Equation 549 becomes in the single ion case

( )
(Jz%’z =V (u.g: : uu:n,) 564

which is identical to Schottky’s result. The electric fields in the two models
are equivalent; in the single-ion case Equation 5-58 gives Schottky’s results
identically.

PT Case. As the last example of analytic solutions for planar
systems, it would be illuminating to examine a system where this model’s
ability to predict the possibility of proportionality is useful in finding
solutions. We will do so in the context of finding solutions for systems

involving nonresonant charge transfer. Consider a generic two-ion system,




with volume source terms for each species, and nonresonant charge

transfer only from species 2 to species 1:
V 1 =fine + fung
V Y =fn,-fia 0o (5-65)
V Yo=fone

where fy = vtdle,- , and v; is the non-resonant charge transfer frequency.

(Note v; is not the resonant charge transfer frequency that has such a

strong effect on the total collision frequency of ions in their parent gases.)

This gives the following relationship:
fn=D2f, (5-66)
Dy

We see immediately that this system is considerably more complicated
than those we have considered earlier. At first glance, it appears that the
complexity of this system precludes the methods used in the PV case to
produce analytic solution. For that case we were able to take the divergence
of the electron momentum equation to produce a diffusion equation that
depended only on n,. Here, the diffusion equation depends on the ion
densities as well. However, let us examine the validity of the assumption of
proportionality in this case:

n =K
1 1 De (5:67)
nz=Kon,
As stated in Equation 5-67, proportionality is valid if K; and Kg are con-
stants, independent of position. We will determine if such is the case.

Equation 5-67 implies the following equation for n,:




a%n,

__[efy + f1 Ko + f2 - fio Ko) + fo]
dp?

£,
Tre ne (5-68)

Next, it follows that A is given by:

22 _[elfy + fi1 Ko + fp - fio Ko) + fo]
1+€

(5-69)

The constraint on A is unchanged:

= I
A 2 (5-70)

We also have constraints on K; and K2. In particular their definition
implies

Ki+Kz=1 (5-71)
Furthermore, the conditions on proportionality developed in Chapter IV
ensure that K; and K; , as proportionality constants, must satisfy the
following relationship:
v

K=otz
X
J

(5-72)

We use the continuity equations to evaluate the source terms in Equation
5-72 in terms of K, K, fi, f2, f1, and fi2 . Solving the algebraic system
consisting of Equations 5-71 and 5-72 produces find the following value for
Ks:

_-(fl + fo + fio )i“/(fl + fo + fi2 )2 + 4f5 (fi1-fio)
2(fuy-fi2)

K2 (5-73)

And for Kj:

K = 1-Kz (5-74)




The ratio ny/n, = K; for each species, as given by Equations 5-73 and 5-74,
is independent of position. The conclusion is that the assumption of
proportionality is valid. This implies solutions for the particle densities and
fluxes that formally are the same as the PV case:

= 24

Y fn.on sm‘ép

n.:n.ocosgp (5-75)
ni=Kan.oc0912‘p

Note that we were able to show that proportional solutions existed prior
to determining those solutions. This is the significant difference between
this model and Schottky-based models, which must use proportionality to
find solutions without any indications of whether the solutions produced
satisfy the assumption necessary to produce them.

Unfortunately, analysis of these solutions (beyond the characteristics
that all the volume ionization cases share) depends very strongly on the
specifics of the relative magnitude of the four frequencies, f; , f2 , f; , and
fia . At the moment, we are more concerned with the implications that
existence of the solutions has on proportionality than we are in discussing
extremely case-specific results. Therefore, we will forego further discus-
sion of these expressions.

Cylindrical Geometry. Finally, we will address volume sources in
cylindrical geometry, using a single example.

CV Case. The cylindrical self-ionization case formally is almost

identical to the planar case, with the substitution for Bessel functions for

trigonometric functions, and with the replacement of /2 with A, , the first
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zero of Jo. That being the case, we will forego the details of the derivation,
and present the solutions for the fundamental mode:

N = neo Jo {Aop)

ni=—fi—n.oJo(loP)

f
j

y="1¢0 7, (Agp) (5-76)
Ao

(sz}-fe) J1 (Aop)

" Ta(1+) Jolhop)

3 G h
Boi

1+€

As mentioned above in the PS case, the small-e-flux approximation

produces a new expression for E, and A9 but no other changes in the

solutions:

Ej:f:i J1 {Aop)

" % (1+)o (hop)
B-77)
5§
2 _ ]
Ao = 1+€

As before, we must determine the ionization frequencies. Making the

same approximations as before results in




f=—20—
eD;‘J;‘ D
2 (5-78)
£D;
f,=-2
D,

Summary

This chapter examined the analytic solutions of systems containing
external or volume source terms. We were able to develop general solution
forms for arbitrary source terms, and show that these forms could be used
to find analytic, closed form solutions for sources that were proportional but
otherwise fairly general.

We actually developed solutions for two different external sources, in two
different geometries. One source described idealized systems involving
completely uniform ionization in either planar or cylindrical geometries.
The other source modeled a spatially varying source of ionization typical of
that produce by externally introduced fluxes of particles.

We also developed solutions for various systems involving volume source
terms, including one where the volume term included both a source
proportional to the electron density, and charge transfer. We used this
latter case to highlight the difference between previous analytic models that
assumed proportionality in the hopes of finding solutions, and the present
model which predicted the possible existence of proportionality and then
used knowledge about the constraints on proportional solutions to find those

solutions.




VI. Numerical Solutions to the Model

Introduction

Rationale. The analytic results from the new ambipolar model have
given insight into charged particle diffusion phenomena. However, there
are a number of physical situations which can only be addressed by
numerical methods. Typically, such situations involve kinetic processes
such as such as recombination, non-resonant charge transfer, or other
source or loss terms of higher nonlinearity than the simple processes we
investigated in Chapter V. In particular, we will use numerical methods
to investigate nonproportional plasmas whose net sources and losses have
varying spatial dependence, or whose net sources and losses do not all
depend the same way on charged particle number density. Such sources
and losses invalidate the proportional solutions of Chapter V. In addition,
we will investigate systems where numerical methods are necessary to
determine the electron temperature, even though the fluxes and densities
can be found analytically.

We conduct these investigations with two purposes in mind:

1. We wish to compare the new model to previous results of other

authors. We do this to demonstrate that the model is suitable to

describe such systems. We compare to theoretical results of

Wunderer, of Young, and of von Engel, and to experimental results

of Labuda and Gordon, and of Schmidt. (Wunderer, 1978; Young,

1965; von Engel, 1965; Labuda and Gordon,1964; Schmidt, 1965)

2. We wish to discover new physical relationships from the solutions,

such as variation of the electric field with nonlinear source terms,

onset of nonproportionality, spatially increasing or decreasing

particle densities, and dominance of the discharge by a single ion.

Such relationships are easier to discover if the physics is as simple as
possible. For this reason, most of the systems examined for this
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purpose will be simplified, to allow concentration on the physics
revealed.

Cases To Be Examined. The cases to be examined can be categorized
by two different source terms: external sources of ionization and volume
sources. All systems used cylindrical geometry, as in the CX and CV cases
of Chapter V. In Equation 6-1 we show the form of the diffusion and

continuity equations appropriate for all the cases examined, as well as the

definition of the ambipolar electric field.

L(I‘.ZD-
Ni _ L N___J
T D, Ne(kTe“'le)
T;
kTS 2L
N, ';Dj
or kT, + kT;
aﬂ=sl-£rl
ar
(6-1)
a2 _g L2
or r
dole o L
or r

H{LL.,.EZ.
E=kTe D; D

€ N.(kT, + lﬂ‘i)

Here, S;,S2 and S, refer to the most general form of the source terms,
including external ionization and volume terms proportional to arbitrary
powers of the number densities. As we discuss each individual system, we
will repeat the system above with the specific source/loss terms entered for

the particular system being considered. Note that we are using the small-e-
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flux approximation. In addition, we use the actual physical quantities
themselves, not the dimensionless version. Many of the arguments for
using non-dimensionalized functions pertain to the abiiity to more easily
investigate the features of analytic solutions. For numeric solutions, the
connection between the input parameters and the final solutions is not as
clear. As a result, these arguments are not as strong for numeric solu-
tions as they are for analytic solutions. Furthermore, the use of physical
solutions for this particular system of equations allowed for slightly
increased numerical stability. The reasons for this increased stability are
not perfectly clear, as stability analysis of a numerical system this complex
is extremely complicated.

Measure of Nonproportionality. One of the phenomena we wish to
investigate is nonproporticnality. We are interested in determining how far
a particular solution deviates from a proportional solution and what are the
implications of the deviation. Such a determination is possible only if we
have a metric for nonproportionality.

A usable measure should have the following characteristics:

1. It should measure deviation in some fashion from proportional
solutions. From Chapter IV, we saw that nonproportionality is
determined by the form of the source. If we have proportional
sources (as we defined them in Chapters IV and V), we find propor-
tional solutions. As we add nonproportional sources, we deviate

from proportional solutions. It is these deviations that we wish to
measure.

2. A value of 1.0 for solutions that match the Schottky solutions is
convenient for comparison from one discharge to another.

3. It should be experimentally useful. One possibility would be that
the quantities involved are experimentally accessible. This allows for
easier and more accurate comparison to experiment. Another
possibility would be a measure that allows comparison of experimen-
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tal values to analytic predictions. This allows for determination of
the validity of correlation between experiment and theory.

4. The measure should be general enough to address a wide variety
of physical systems.

One complication is the uncertain usage of the term “Schottky solu-
tions”. In this research, “Schottky Solutions” is used to refer to those

solutions produced by Schottky’s ambipolar model when the only kinetic

processes are volume ionization by plasma electrons, given by S; = viN, .

Such processes give trigonometric solutions for planar geometry, and
Bessel functions for cylindrical geometry. Other systems may give propor-
tional solutions, but these will not be referred to as Schottky solutions.
There are a number of possible measures. None of them completely
meet all the requirements above. In particular, it is difficult to meet the
first three requirements and maintain complete generality. We chose to

use a perfectly general measure, and accept the limitations that result. We

g.LﬂL

Bi = (6-2)
2%
re L-d

In this expression, the “i” subscript refers to the ion species. 8;is used

define our chosen measure as

as a measure of the source term that would give rise to proportional
solutions, evaluated on axis. For example, for uniform external ionization,

it would be the external source term. For volume sources, it would be the

ionization frequency. T is the particle flux, evaluated at the wall. 8; can be

considered a measure the behavior that would exist if the nonproportional
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process were absent, while I is a measure of the behavior that exists with

the nonproportional process present. As an example, if the discharge

involved volume ionization plus recombination, § would be given by the

expression B = (ViNe¥([Te) , with each I' evaluated with the effects of

recombination included.
This is not a perfect measure of nonproportionality. For instance, it only
uses values on-axis and at the edge of the discharge. It can also give

misleading results for systems where one ion dominates the discharge. In
such cases, p can seem to indicate proportionality for the dominant ion,
when in fact the discharge as a whole is highly nonproportional. However,

its generality and its independence of system-specific effects makes it a

worthwhile parameter.
The measure chosen meets our criteria. First, proportional solutions

predict a particular relationship between the on-axis source terms and the

wall fluxes, which determines B . As the solutions move away from

proportionality, that relationship, and B , changes. Second, it does have a
value of 1.0 for Schottky solutions. Third, it is experimentally accessible.
For instance, a value of P = 2.0 means that the proportional source terms

are twice what the ion fluxes at the wall would predict them to be. As a
result, using a proportional model to determine the on-axis ionization from
the wall fluxes would also be in error by that same factor of 2.

There are other measures we could use. One would be to calculate the
integral of (N;(r)/N(r) - N;(0¥N,(0))%, as r goes from 0 to R . For a propor-
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tional discharge, this would be exactly zero for each species. However, it
would be very difficult to compare this measurement to experiment.
Furthermore, it does not relate to any of the external or internal parame-
ters of the discharge, which restricts its utility. It would also be difficult to
devise a scale for this measurement; that is, is a value of 2.0 nearly propor-
tional or very nonproportional?

Because of the difficulties that arise with other measures, we choose to

use P , knowing full well that for different situations there may be other

choices.

External Ionization. Three systems will be examined that use
external ionization sources. The first is investigated in the verification of
the model. The other two are addressed in the last part of the chapter,
when we use generic plasmas to investigate the effect of recombination and
charge transfer in nonproportional discharges. We will briefly describe
each system below. Fuller descriptions will be provided as we address each
individual system.

The first system examined duplicates the system described in Wunderer
(Wunderer, 1978). It uses a pseudo-Gaussian external source for the first
species, nonresonant charge transfer from the first species to the second,
and recombination for both species. The entire purpose for examining this
system is to demonstrate that the present model produces results consistent
with previous theoretical analyses, in a regime where both the previous
analysis and the present one are applicable. Because of the contrived

nature of Wunderer's system, we do not attempt to draw any general

conclusions.




A second system uses uniform external ionization for two species,
diffusion as a loss for both species, and recombination as an additional loss
for the second species. Here, we are interested in examining deviations
from proportionality and discovering scaling relationships for recombining
multi-ion plasmas. That being the case, we use quasi-realistic gases, in the
sense that their parameters are reasonably close to those of real gases, but
are chosen more for convenience in demonstrating the desired effects.

Another system also uses uniform external ionization for both sources,
but includes nonresonant charge transfer from the first species to the
second species instead of recombination. We are interested in examining
deviations from proportionality and discovering scaling relationships, and
so we again use quasi-realistic gases, still in the sense that their parame-
ters are reasonably close to those of real gases, but are chosen more for
convenience in demonstrating the desired effects.

Volume Ionization. Three systems were examined that used volume
ionization sources. The first two are used to demonstrate the applicability
of the new model to physical systems. The last is a generic system used to
investigate recombination and volume sources in a discharge.

One system models a helium-neon mixture, at various mixture ratios.
The new model is used to calculate the electron temperature required to
meet the eigencondition of a volume-ionized discharge. The electron
temperatures calculated are shown to agree with previous theoretical

results for pure gases and mixtures, and to experimental results for

mixtures.
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In a second case, the new model is used to calculate electron tempera-
tures and electron wall fluxes for two different systems based on an
impurity-contaminated Ny discharge. The first system considers an N,* -

N,* discharge model. This system has a volume source term for Ny* ,
charge transfer from N2* to N,* as the only source for N* , and dissocia-
tive recombination of N,* as a loss term. The second system uses an
N2* - HN2" discharge model, with direct ionization of N2* and charge
transfer from N2* to HN2* . The N2* - N system models dissociative
recombination, which is not present in the N3* - HN,* system, and provides
information about the relative importance of the two species. However, the
N2* - HN2" system allows us to see the effects of small admixtures of a more
mobile ion. This example demonstrates the ability of the model to use only
two ion species to describe systems to a fair degree of accuracy, when those
systems have more than two ion species. The results are compared to
experimental data of Schmidt (Schmidt, 1965).

A third system uses volume ionization for both species, and recombin-
ation as a loss term for the second species. As in the corresponding
external ionization case, the primary purpose is to discover more about the
deviations from proportionality and establish scaling relationships. That
being the case, the system once again uses quasi-realistic gases, still in the
sense that their parameters are reasonably close to those of real gases, but
are chosen more for convenience in demonstrating the desired effects.

Algorithmic Method. An algorithm usually described as the relaxation
method was used to solve the two-point boundary value problems arising

from this investigation. This is a boundary value problem-solving algo-
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rithm based on recasting the problem as a minimization of the error
between the finite differenced form of the derivatives, and the functional
form that the derivatives are equal to. This error is evaluated over the
entire region, and then an iterative process is used to approach the correct
solutions. The code used to implement the relaxation algorithm itself is
from Numerical Recipes the Art of Scientific Computing (FORTRAN
Version) (Press, ¢t alia, 1989). For complete details on the programs, see
Appendices C and D. Appendix C describes the overall structure of the
programs, including a more complete explanation of the relaxation
method. Appendix D describes each separate program, including listings
of the various source codes and makefiles.

All solutions were produced on a Commodore Amiga 3000UX computer
using the NKR, Inc Fortran-77 compiler and Unix System V, Release 4,
Version 1.1. The maximum resolution allowed in the code was 201 mesh
points, determined primarily by the balance between the need to have
sufficient accuracy to describe physically pertinent detail and speed of
solution. At the maximum resolution used (201 points), five to ten itera-
tions were performed per second. This was fast enough to allow interactive
operation of the program. Since the time required scales approximately as
the square of the mesh size, increasing the mesh size dramatically slows
the algorithm. Therefore, higher resolutions were not used. This 201-point
resolution was generally used for all calculations of final results. Floating

point calculations were performed using 64-bit reals to ensure that roundoff
error did not affect the results.
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Comparisons

At this point the process of comparing the new model developed in this
effort to the results of other authors begins. The goal is to show that the
new model can accurately depict diffusive plasma discharges containing
multiple ions. We do that by comparing our results with calculations from
previous models, and with experimental results.

Comparison to Wunderer’s Results. Wunderer developed a multiple ion
model using an initial derivation based on Schottky’s assumption of
congruence, much as previous authors such as Oskam did (Wunderer,

1978; Oskam, 1958). The result is the following system of differential

+ §r_1,_| (6-3)
&t leon

Here, u is the particle mobility, and U is the particle energy (corresponding

equations, one for each ion species:

an; u{ .( (Vzn. |vn.F) VneVni| o2
¥= Uenj el wove f Rl ,+U,Vn,

to kT). The collision term represents the net source or loss of each species
due to ionization, charge transfer, recombination, and so forth. This result
is dependent on an expansion of the electric field corresponding to the small-
e-flux approximation.

Wunderer discusses extensively the validity of the assumption of
proportionality. However, since the validity of the that assumption has
already been addressed in Chapter IV, Wunderer’s numerical solution is
more germane to the matter at hand.

Wunderer gives one example of a complete solution. This example is for
a time independent system with cylindrical geometry, with an external

source for the first ion species only, charge transfer from that species to the
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second species, and recombination for both species. There is no pretense
made that this model is a good representation of any particular realistic
gas. However, the geometry is readily realizable, and the gas parameters
correspond approximately to those appropriate for H3* and H30* . Wunder-
er's primary purpose was attempting to model a system where he was
certain that proportionality would not hold. The utility for this investigation
is in comparing two different approaches (ours and Wunderer’s) to the
same system, and seeing how they compare.

In the present model, the continuity equations for this case become:

or
(64)

ol
—= = vn; - Ggnagn,

Jar
Species 1 (n)) corresponds to H3*, and species 2 (n3) to H30*, formed by an
associative charge transfer reaction with HoO . Wunderer used values
appropriate for a pressure of about 0.1 T. Note that “n” in this case is not
the normalized “n” used earlier, but rather is the physical variable. This

matches Wunderer’s notation. Note also that the right hand side of each

equation is the same form that Wunderer uses for dn/ dteol; .

In order to compare with Wunderer’s solutions, the same norralized
system of equations must be used. His equation (40) provides the following
definitions (with some modifications to described shortly):
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kT
= X1,
U 1T,
Dqi = Di(1+U)
= fiR?
fip) DuA
9 (6-5)
G = YeR®
Dll
201 Da2
g Dal
S= R2Aa,
Dq2
=Dal
D Duz
3 o9
3% or

where R = discharge radius (cm)
D, = diffusion coefficient (cm?/s)
f, = external source term (cm%/s)

A = normalization for the external source (cm™)
ve = charge transfer collision frequency from species 1 to 2 (Hz)
o; = recombination coefficient for species i (cm¥/s)

These definitions correct a minor flaw in Wunderer’s definition. His
normalizations of f; and n,; were inconsistent; one or the other was not
dimensionless. We chose to correct this by leaving the normalization for
ne; as Wunderer had it, and éorrectmg that for f; . In effect, Wunderer’s
normalization is equivalent to assuming R = 1.0 .
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In addition, we use the following definition for the normalized current
density:

=R
" r'D.i N (6-6)

Once more, note that this is not the same normalization used in Chapters
III, IV, and V. Instead, this normalization is chosen to be consistent with
Wunderer’s notation. The confision is unfortunate, but unavoidable.

These definitions and the new model produce the following system:

dNy =-n(1+U) + HlU(yl +Y2)
ap Ne

oN,

3 - h+v)

m !
——=-—4f- -GN

9% _ % . GDN, - SN,N,
p P

The source term is of the form

f(p) = exp "6%)”) 68)

In this notation, “T'S” represents the normalized recombination coefficient

and “G” the normalized charge transfer frequency for N;, and “S” is the
normalized recombination coefficient and “GD” the normalized charge
transfer frequency for Nz . “f" is the external source term. The first two
equations are the momentum equations, and the second two the continuity
equations.

The solutions were found using the relaxation method algorithm, as
described above. All input parameters used were identical to Wunderer's,

and are shown below:
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D = 0.9 => The two ions have very similar mobilities and diffusion
coefficients.

T = 0.2 => Species 2 has approximately five times the recombination
rate as species 1.

U = 5 => The electron temperature is five times larger than the ion
temperature.

G = 0.178 => The charge transfer loss frequency for species 1 is about
1/30 the diffusion loss frequency.

S = 100 => The recombination loss frequency for species 2 is about 20
times the diffusion loss frequency.

Here, the diffusion loss frequency is defined as D./(R/':\.o)z, where Ag is the

first zero of the zero-order Bessel function Jo .

Since no analytic solution was available, even for simplified reactions, a
very simplistic initial starting function was used. This starting function
was determined by formally integrating the continuity and momentum
equations as if the external source had no spatial dependence, but evaluat-
ing the densities and fluxes using the actual spatial dependence of the
source. This very poor approximation contributed to lengthening the
iteration process. Even so, convergence to better than one part in 107 was
achieved in less than 60 iterations. This compares to Wunderer’s iteration,
which required 100 iterations to achieve convergence to within one part in
10° (Wunderer, 1978:411). The increased efficiency may be due }to a more
efficient numerical algorithm. However, it certainly appears that the
present model may offer advantages over Wunderer’s.

In Figure 6-1 we give our results, comparable to Wunderer’s Figure 2.
Our results are indistinguishable from Wunderer’s Figure 2, within the
limits of accuracy of Wunderer’s figure (Wunderer, 1978:413).
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Normalized Number Densities

0.0 0.5 1.0

Figure 6-1. Normalized Number Densities and External Source Term For
Wunderer’'s Example System

As in Wunderer, all the densities are normalized by their on-axis
values. As a result, No appears to be larger than N, . Nj is proportional to
N. , within high accuracy. As shown above, the value of G indicates charge
transfer from N; to N3 that is approximately 3% of the diffusion loss for Nj.
In addition, S indicates recombination for N2 that is some 20 times the
diffusion loss for that species. The overall system is one where N, ,the

species with the largest source term, also has the smallest volume loss
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term. As a result, this discharge is dominated by N; . For instance, our
results indicate that the flux of N; at the edge of the plasma is 40 times
larger than that of No .

The results shown later in this chapter indicate that the dominant
species in a system like this can often be described by a proportional model.
This is confirmed by Wunderer’s results, which show the same results for
N; and N, with or without assuming proportionality (Wunderer, 1978:412).
Later in this chapter we will see other instances of domination by one
species leading to proportionality of the dominant species. This proportion-
ality does not imply that solutions for that species can be found by ignoring
the nonlinear effects. Instead, it results from one species being such a
minority in the discharge that the electron density and other ion density are
essentially equal.

Proportionality definitely does not hold for the other species. Clearly, N,
and N, do not have the same spatial profile. In fact, the profile for N5 is
flattened, when compared to N; . This is consistent with results to be
presented later, which show this effect to a greater extent. Wunderer also
presents results which depict the wall flux for species 2 as calculated by a
proportional model being in error by 30% (Wunderer, 1978: 412-413).

We should note the implications of the extremely close agreement we
found between the results presented above and Wunderer's. The system
Wunderer modeled is very complex, with a highly nonuniform external
source, charge transfer from one species to another, and recombination for
both species. The source term is far from any simple analytic form, and

there are linear and nonlinear kinetic reactions occurring. The differential
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system we solved bore little resemblance to Wunderer's. Yet, the model
produced essentially identical results in fewer calculations. Thv-. this
case gives very strong evidence to the validity and utility of the new model.

Temperature As an Eigenvalue. Next, we wish to evaiuate the relation-
ship between the discharge parameters and the electron temperature. As
noted in Chapter V, the electron temperature can be considered an eigenval-
ue of the system for systems driven by volume ionization. In particular, the
electron temperature affects the ionization rates of the various species, as
well as entering directly into the differential equations. Thus by incorporat-
ing the appropriate plasma parameters (ionization thresholds, pressure,
dimensions, and so forth), one can calculate the electron temperature for
various systems. For this investigation, the electron temperatures deter-
mined by the new model were compared to theoretical and experimental
results of other researchers.

The investigation serves two useful results. First, it provides verifica-
tion of the numerical method, including correct solution of the differential
equations and proper incorporation of electron temperature into the model.
Second, it demonstrates that the proportional analytic solutions described
in the last chapter are useful to describe realistic systems.

We compare the results to Young’s analysis of electron temperature in
helium-neon glow discharges, which was based on an earlier work by
Dorgela, Alting, and Boers (Young, 1965. Dorgela et alia, 1935). Young
used an expression developed by Dorgela, Alting, and Boers that related the
mobility, initial slopes of ionization efficiencies, ionization potentials, and

gas fraction to the electron temperature in order to calculate electron
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temperatures for situations comparable to the experimental conditions of
Labuda and Gordon (Young, 1965; Dorgela, et alia, 1935; Labuda and
Gordon, 1964):

Bcewtli o gt

(6-9)
= ‘Egm)”zxﬁ(tg)m = 1.72x10"7 V2 gec cm -3 Torr 2

Young showed that the expression gave reasonable agreement to the
Labuda and Gordon results. As reported by Young, the Dorgela et alia
expression is a multi-ion form of von Engel and Steenbeck’s earlier work,
and states an eigencondition for the electron temperature with a total
1onization frequency based on a weighting with the gas fraction f . If the
eigencondition reported in the fifth equation in Equation 5-77 is evaluated
using von Engel's Equation 8.36, the results are, with two exceptions,

identical to Equation 6-9 (von Engel, 1965:293). First, Equation 6-9 contains

an additional 1/(1+€) term involving the ratio of the ion and electron

temperatures appearing on the left hand side of the Equation 6-9. This term
accounts for the ion temperature dependence in the differential equations
that Young’s model did not. Second, the numerical factor of 300 Young
uses to correct for inconsistent units does not appear in Equation 5-77. The
first difference represents a difference in the physical model. The second
difference is inconseduential; Equation 5-77 uses consistent units and does
not need the correction factor.

Our intent was to compare our results to Young’s. Therefore, we used

the same ionization source and diffusion loss term. In addition, we used
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Blanc’s law and Young’s input values for the mobilities, ionization poten-
tials, and ionization efficiencies to calculate the necessary input values of
diffusion coefficients and ionization potentials for our calculation.

To perform the calculations, we used a variation of the multi-ion model
used for the various volume ionization systems later in the chapter, with
the only significant modifications being in the output format. This uses the
full formal methodology applicable to nonproportional multi-ion systems.
The full nonproportional model was used for several reasons; to verify the
accuracy of the program coding, to show that the nonproportional model
reduces to proportional solutions for appropriate source terms, and to show
that the single-ion solutions are identical to Schottky’s well-known solu-
tions.

The numerical method solves for the fluxes, the number densities, and
the electron temperature. It begins by assuming the analytic solution from
the CV case, Equation 5-13 that for single ions is identical to the Schottky
solutions. To determine the values for the analytic solution, it solves the

eigencondition of the fifth expression in Equation 5-77 of the last chapter
using an ionization freqency v; based on a Maxwellian distribution for the
electrons and a linear dependence of cross-section on energy. The expres-
sion for v; is equivalent t3 von Engel’s (von Engel, 1965:293). This produces

an initial value of the temperature that is used to generate the fluxes and
number densities. The method then uses the relaxation method to iterate to
the actual multi-ion solution that satisfies the momentum and continuity
equations, including the electron temperature as one of the variables. The

final solution is the set of fluxes, densities, and electron temperature that
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meets the multi-ion boundary conditions and satisfied the multi-ion
differential equations.

If the two models were equivalent, iteration would not be necessary; the
analytic and numerical solutions would be identical. That is exactly the
result. The only time that convergence did not occur instantly was when
the numerical method used to calculate the temperature for the analytic
solution used a larger tolerance than the iteration method used to find the
actual multi-ion solution. For instance, if the initial tolerance in finding
the analytic solution for kT, was 103, then the temperature might be off as
much as one part in 1000. If the tolerance for solving the differential
equation were 10, additional iterations might be required to reduce the
error in kT, from 1 in 1000 to 1 in 1,000,000.

Given the exact match between our results and Young’s, we do not

present any actual results. Rather, we merely note that in every case the
differences were less than 1%, and are attributable to the factor of 1+€ that

appears in our model, but not in Young’s.

Both Young’'s results and the present calculations adequately describe
experimental results for this rather simple two-ion system. However, the
present model can accommodate more accurate descriptions of the reaction
kinetics and ion parameters, and can also include the reactions occurring

in more complicated discharges that Young would not have been able to
describe at all.

In summary, this comparison demonstrates several points:

1. The numerical method properly accommodates electron tempera-
ture variation, and correctly solves the differential equations.

6-20



2. When using the same expression for ionization frequency and
mobilities, the proportional multi-ion solutions of the CV case give
the same electron temperatures as previous simpler models do,

except for a correction factor of 1+e that the previous models did not
account for.

3. In the single-ion case, the CV case reduces precisely to Schottky’s
results.

4. Based on the close agreement with Young’s results, both models
agree well with the experimental results of Labuda and Gordon
(Young, 1965. Labuda and Gordon, 1964).

Comparison to Schmidt. In the previous discussions we compared our
model to other theoretical models, and to experimental measurements of
electron temperatures, all in fairly simple systems. Next, we will compare
the results of our model to experimental measurements of a more compli-
cated multi-ion system. This comparison does two things. First, it provides
a further opportunity to show the applicability of the model to realistic
systems. Second, the comparison will demonstrate an effect of introducing
an impurity gas of high mobility into a discharge.

We look at a comparison between our model and results obtained by
Schmidt for the nitrogen plasma (Schmidt, 1965). Schmidt performed
measurements of the positive column of a 40 cm long, 3 cm diameter
nitrogen glow discharge at pressures ranging from 0.75 to 3 T, which is
high enough to ensure diffusion conditions for both ions and electrons. He
measured electron and ion fluxes at the walls, using mass spectrometry to
distinguish the various ion species. He also measured longitudinal current
and longitudinal field as a function of position. Finally, he reported values
for the electron temperature.

Schmidt measured both electron and ion fluxes at the wall of the

discharge. His results showed the electron wall flux increasing with
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increasing discharge current at a fixed pressure, and with decreasing
pressure at a fixed discharge current. His measurements of ion fluxes
produced evidence of N*, No*, and Ns* ions at the wall of the discharge.
Furthermore, he stated that the measurements of N2* may have included
N¢* as well. He gave no explanation of this statement. We note that the N*
ion is essentially an No*-Nj dimer. Such dimers are often easily dissociated
by the high fields used in mass spectrometric measurements, and only the
charged constituents detected. Furthermore, for the pressures and
number densities of his discharge, we will see that we would expect the flux
to be preponderantly N* in at least some cases. In addition to the various
nitrogen ions, he measured H* ions, as well as NH," ions, even though he
claimed to have used only pure nitrogen in the discharge. In fact, at the
highest pressures and discharge currents, H* becomes the dominant ion
flux measured (Schmidt, 1965:152-153). No explanation beyond unnamed
impurities adsorbed in the apparatus was given for the source of the H*
ions. Schmidt gave several multi-step processes as the possible sources for
the NH," ions, but did not further discuss the source of the hydrogen
(Schmidt, 1965:152-158). His flux results for the individual ion species
showed varied dependencies on discharge current; some species increased
with discharge current, some decreased, and some attained a maximum
and then declined. The data on the individual ion fluxes appear to be so
species-dependent that general statements would not be appropriate, except
to note the expected result that the fluxes decreased as pressure increased.
He also gives measured values for the electron temperature as a

function of discharge current. He shows the electron temperature decreas-
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ing as the pressure increases, and as the discharge current increases. The
dependence of the electron temperature on discharge current appears to
depend on the pressure considered. At 0.75 Torr, there is little dependence;
at 1.5 Torr, kT, decreases slightly with increasing current, and at 2.0 Torr
the decrease is more pronounced (Schmidt, 1965: 155). Either multi-step
ionization or ionization from the dissociated state could be an explanation.
In either case, the increasing electron number density produces higher
densities of the intermediate state with concomitant higher ionization
rates. However, there is not enough information in Schmidt’s results to
clearly determine which is the explanation, or if some other mechanism is
present.

Schmidt used probes to measure the longitudinal potential as a function
of position, from which he then obtained the longitudinal electric field. His
results show the field decreasing as the longitudinal current increases,
and as the discharge pressure increases (Schmidt, 1965:155). These agree
with the temperature behavior. The ratio of total electric field to back-
ground number density is a parameter that can be used to describe the
ionization rate much as the electron temperature can be used (von Engel,
1965: 179-185). Therefore, the similarity of the behavior of field to the
behavior of the electron temperature is not surprising.

Basis for Comparison with the New Model. We will not attempt to
accurately simulate all species and all details of this discharge. To do so
would require much more information on the gas mixture than is available
from Schmidt. Furthermore, although the general theory could certainly
be used to develop a model that coupled the longitudinal field into the
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discharge, the present version does not do so. Therefore, we will not
attempt to model that field. Rather, we used Schmidt’s measured values to
determine some of the input parameters to our model.

We will select aspects of the discharge, and compare our theoretical
results with the experimental results of Schmidt. In particular, we will
examine his results for electron temperature in the discharge and for
electron fluxes at the wall. The electron temperature comparison is
hampered somewhat by the apparent experimental scatter of Schmidt's
results and by the impracticality of trying to include all the species in the
model.

We will model the discharge in two ways. An N2'-N,* svstem will first
be used. This allows clear demonstration of the results of such reactions as
charge transfer and dissociative recombination. Experimental examina-
tion of such reactions can be complicated by the difficulty of separating the
various effects. An Ny*-HNy' system will be used second. This will
highlight the sensitivity of the discharge to trace impurities.

For either case, we must determine various input parameters from
Schmidt’s data. The physical parameters of the discharge, including
pressure, are given directly. However, one of the input parameters needed
is the on-axis electron density. Schmidt did not provide values for this.
Instead, he presented his results as a function of the longitudinal dis-
charge current. This must be converted into the on-axis electron number

density, Nog . The total longitudinal current is

R
I=evq I( Ng(r)2rrdr (6-10)
0
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where v4 is the electron drift velocity. For the values pertinent to this

system N, can be written as
N.(r) = N.oJo(zo{i) (6-11)
Here, Ag is the first zero of the Bessel function Jo, and R is the radius of the

discharge. The validity of Equation 6-11 depends on the electron density
being well-represented by a Schottky profile. This was the case for all the
cases examined. Of course, Equation 6-11 is not necessary to the solution of
the problem; it is possible to integrate the actual number density profile
and multiply by the drift velocity to get the current. The calculations
performed both analytic and numeric integrations. The difference was
never as high as 10%, and usually was much less.

Equation 6-11 allows evaluation of the integral in Equation 6-10, express-
ing Ngo in terms of I, vg4, Neo, R, e, and A9 . Ngo can then be determined

from the data of Schmidt and the drift velocity, vq . Fortunately, the
information to find a reasonable estimate of the drift velocity is available.
Schmidt gave values for the measured longitudinal electric field as a
function of the discharge current (Schmidt, 1956). Those values, and the
pressure, produce E/p. The relationship between drift velocity and E/p has
been widely investigated. For convenience, we use results from von Engel
(von Engel, 1965:124). Thus, once we determine the pressures and dis-
charge currents we are interested in, we can determine N .

N3* - Ng* Systems. For the first set of calculations, No* and N4* were
assumed to be the two ionic species in the discharge. Nj;* is formed by

direct electron impact ionization, according to the reaction
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No+e 5 Ni+e +e (6-12)
N,' is formed by three-body collisions, according to the reaction
N2+ N2+ N2 —= Ni+ N, (6-13)
This reaction, of course, is also a loss for N2* . Finally, the dissociative
recombination loss reaction for N* is
Ni+e = N2+ No (6-14)
These reactions produce the following set of momentum and continuity

equations for the two ions:

oL - wN,-kN; -1 (6-15)

aaL = ViN, - alN2N, - ‘I;'."
r

Note the change in the meaning of the subscripts; N; refers to ionic species
1, or N2* , while N2 refers to ionic species 2, or N;* . We obtained the value

for vi from Von Engel, just as we have in the other numerical calculations.

(Von Engel, 1965:293). We obtained the value for k, the rate coefficient for
associative charge transfer, from the Smith and Adams article in Lin-

dinger, Miirk, and Howorka (Smith and Adams, 1984: 194 - 217). Finally,
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we obtained the value for a, the recombination coefficient, from Whitaker,

Biondi, and Johnsen (Whitaker, Biondi, and Johnsen, 1981). To summarize
the values of the various input parameters:

1. Diffusion coefficients were 51.7 and 63.07 cm?/a for No* and N,*,
respectively, based on Schmidt’s mobility data (Schmidt, 1965:155).

2. Ionization for No* was based directly on von Engel’s formulation,
using an ionization potential of 15.8 eV and initial slope of the
ionization efficiency of 0. 161/cm-Torr-Volt derived from Kieffer (von
Engel, 1965: 293. Kieffer). Since N,' is not formed by direct ioniza-
tion, its ionization rate was set lower than that of No* by >30 orders of
magnitude (the algorithm requires a non-zero value).

3. The rate coefficient for associative ch%-ge &ransfer, from
Lindinger, M#rk, and Howorka, was 7.5x10"“" cm’/s (Lindinger,
Miirk, and Howorka, 1984:208).

4. The recombination coefficient was based on Whitaker, Biondi, and

Johnsen and was given by a = 3.128x107(T,/1eV)*®cm®/s (Whitaker,
Biondi, and Johnsen, 1981).

These particular species were chosen for two reasons:

1. They are the dominant species occurring in a pure N2 discharge
for the conditions depicted in Schmxdt This conclusion is supported
by Schmidt’s results, which show N,* a8 the dominant nitrogen ion
in the discharge and indicate that N4* could have been the species
measured instead of No*. It is also supported by our calculations,

which 1nd1cate that, if anything, N,* is present in larger quantities
than Nz .

2. They allowed us to include a realistic set of reactions that are more
complex than the simple systems we have examined so far. Incorpo-
rating such complicated processes in the system would test both the

numerical correctness of the procedures and the physical validity of
the model.

We would be surprised if we were able to match Schmidt's results
exactly with this set of ions and reactions. For one thing, Schmidt’s system
had hydrogen produced from some unknown source. Hydrogen ions (either
H* or Hy") are extremely mobile compared to the various nitrogen ions. As

we will discuss later in more detail, the presence of even small amounts of
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hydrogen in the discharge can lead to higher electron fluxes and necessi-
tate higher electron temperatures. In addition, we would expect to see
effects due to the presence of the other nitrogen-containing ions in the
plasma. However, we feel that testing the ability of the new model to
describe discharges accurately using simplified kinetics is important.

We chose to make two comparisons to Schmidt. One was the electron
temperatures. The other was the electron fluxes at the wall, determined
from the electrical current density due to electrons that Schmidt gives in
his Figures 4-6 (Schmidt, 1965:152-153).

Before discussing the two comparisons, some general comments about
the results would be appropriate. On axis, the number density for N2*
relative to N,* was approximately 2% at 2 T, 5% at 1.5 T, but approximately
35-40% at 0.75 T. The recombination loss was smaller than the charge
transfer or ionization rates by factors in the range of 3 to 10, and generally
closer to 10. Recombination, though present, is not dominating other
source or loss processes. Instead, the discharge is largely governed by
volume ionization, charge transfer, and diffusion. The analytic solutions
in Chapter V indicate that such discharges are proportional, with Schottky
number density profiles (Bessel functions in this geometry). Such a descrip-
tion is consistent with the results for the integral of the electron number
density, which showed close agreement between the numerical integration
and the analytic integration based on Equations 6-9 and 6-10. This close
agreement indicates that the solutions were close to the proportional
solutions that charge transfer with no recombination would have produced,

and therefore indicates that recombination was a smal! effect in the overall
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system. In fact, given the small contribution of recombination, it would
have been possible to model this system analytically with reasonable
accuracy, except that determination of the electron temperatures would
still require numerical calculations.

We also note that our calculations enable us to distinguish between No*
and N, and provide predictions of the proportions of each present in the
discharge. Schmidt's experiment was unable to do this. Schmidt's only
discussion of N4 is a short reference indicating that it may be present in
his N* measurements (Schmidt, 1965:156).

Now, let us examine the results of the comparisons between our model
and Schmidt’s experiment, starting with the electron temperatures.
Figure 6-2 compares the electron temperatures measured by Schmidt and
those obtained from the model. There is a clear disagreement in the
scaling of the temperatures. Schmidt’s values are higher, by as much as
50%. Considering the sensitivity of the ionization rates to electron tempera-
ture, this is a significant disparity. For instance, the difference between the
value of 1.44 eV that the calculations produced for 70 mA and 1.5 T and
Schmidt's measurement of 1.85 eV corresponds to an increase in ionization
rate of approximately 12 times. Losses in Schmidt’s system that are not
included in our system might explain the difference. When we discuss the
N2*-HNjy' system we will examine such a possible loss, and go into more
detail on the effects of such losses on kT, .

It is difficult to determine if the calculated results and Schmidt’s differ
in the relationship between current and temperature at each pressure.

Schmidt's data gave little definitive correlation about the relationship
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Figure 6-2. Comparison of Calculated and Measured Values of Electron
Temperature at Selected Discharge Currents

between current and temperature. Although his data did not include
indications of experimental error, this lack of correlation appears to be due
primarily to scatter in his data. If any correlation exists, it is in the
decreasing temperature with higher current exhibited by the measure-
ments at 1.5 and 2.0 T. Examination of Schmidt’s Figures 13, 14, and 15
reveal that the measured H* flux as a fraction of the total flux increases
with increasing longitudinal current at 0.75 T, but rose to a peak and then
declined at 1.5 and 2.0 T (Schmidt, 1965: 156-157). This could provide the
explanation; as will be shown in the next section, as hydrogen becomes less
of a factor in the discharge, the temperature can decrease.

The calculated temperatures are almost constant with respect to

current, exhibiting a slight increase as current increases. This is consis-
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tent with a discharge that has recombination present, but for which
recombination is not dominant. Higher currents imply higher N.o .
Recombination, as a loss term quadratic in Noo , will increase more rapidly
with increasing N.¢ than diffusion or ionization. This increased loss term
requires the increased ioni "ation associated with a higher electron temper-
ature.

There is one area of clear agreement between the two sets of data. Even
if we take into account the experimental scatter, both our results and
Schmidt’'s show temperature decreasing as pressure increases. This is a
direct consequence of the balance between source and loss that determines
the electron temperature. Using the example of a proportional volume

ionization system, we note that the eigencondition expressed in Equation

5-77 requires €/(1+€)Xv;/D; to be constant. As the pressure increases, D;

decreases. To maintain the entire expression constant requires a corre-

sponding decrease in v; and therefore in kT,. Schmidt’s system represents

a more complicated case, but the general arguments still apply. We still
expect to see temperature decreasing as pressure increases.

Results for the fluxes reveal closer agreement. In Figure 6-3 we show
the calculated and measured electron fluxes to the wall. Overall, these
results show closer agreement to the experimental data. The calculated
dependencies of the fluxes on pressure and electron current are very
similar to the experimental dependencies. The differences in magnitudes
are not disturbing. The calculated results are srmaller by factors of at most

2.5. This difference is not surprising, given the generally higher tempera-
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Figure 6-3. Comparison of Calculated and Measured Electron Wall Flux

tures that Schmidt found. In fact, let us demonstrate how those higher
temperatures can more than explain the difference.

Consider the effect of higher kT, on the fluxes in a recombining plasma.
For simplicity, consider a single-ion plasma, with no sources other than
volume ionization and recombination. For such a plasma the continuity

equation is

9L _ N, - oNZ L (6-16)

As discussed above, the higher temperatures reported by Schmidt produce
an ionization frequency as much as 15 times higher than the calculations.
If only volume ionization were present, this would imply fluxes 15 times

higher, also. Recombination reduces this somewhat, but not by the factor of




six difference between 2.5 and 15. Experimental error, either on Schmidt’s
part or in the data used to produce the inputs for the calculation is possible
as well. If those effects are not enough to account for the six-fold difference
between the ionization rates and the fluxes, then we must assume addi-
tional volume losses due to reactions not included in the calculations.
Considering the many speies Schmidt reported that are not included in the
model, such an explanation is reasonable.

For several reasons, we do not compare the calculated results with the
experimental ion fluxes. First, our total ion flux, of course, is equal to the
electron flux. Schmidt’s total ion flux does not equal his total electron flux,
implying losses or calibration errors in his measurement equipment.
Without more information, it is impossible for us to determine how, or
indeed, if his losses varied from ion to ion. Therefore, it is difficult for us to
compare relative fluxes. Second, Schmidt does not distinguish between the
N2* flux and the N4* flux. This makes comparisons of fluxes of those
species in his results impossible. Finally, even if we were modelling
species that Schmidt gives distinct results for, the presence of so many
other species in Schmidt’s experiment distorts the results to the point that
comparisons lose much of their meaning.

N2* - HN,* System. Let us now examine an No*-HNs* system. Our
purpose is to demonstrate a mechanism that increases the temperatures
and fluxes. The presence of charge transfer from N»2* to a more mobile ion
would force a higher temperature and also increase ionization. Since
charge transfer does not reduce the source for electrons, the higher

ionization would also produce higher electron fluxes.
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Schmidt reported H* in the fluxes at the wall of the discharge (Schmidt,
1965: 152-153). This implies the presence of Ho as in impurity in his
discharge. That being the case, charge transfer will occur according to the
following reactions:

k
N3+H; — HN$ +H

k
N3+ Hy — N2 + H}

(6-17)

This is a near-resonant charge transfer reaction, with a difference in
ionization potential of only 0.56 eV for the formation of HN3* and 0.06 eV for
the formation of Hy*, and with N having the higher potential in both
cases(McDaniel et alia, 1980: 2732). McDaniel et alia report that these
reactions have a combined reaction rate of 1.8x10® cm3/s, with HN," as the
predominant product (McDaniel et alia, 1980: 2732), and show other results
that HN3'"is the only product, with a reaction rate coefficient of 2x10° cm¥/s
(McDaniel et alia, 1980:2345). With only trace amounts of Hy present, and
therefore even less H, recombination is unlikely for either species. In
addition, the intent of the calculation is to examine the effects of hydrogen
impurities on the discharge, not the effects of recombination. With no
recombination present, this is a three-ion proportional system similar
to,the CT case of Chapter V. The eigencondition that determines the

electron temperature in this system is

2
h) __e [itve+velKi | veK) | vgK)
(R (1+e) D, * D, ' Ds (6-18)

where vi2 and v.3 are the charge transfer frequencies from No' to NoH" and

Hz", respectively, and K; is Ni/N,. Equation 6-18 can be expressed as
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with v, defined as (v¢2 and v3) . For the valaes used in these calculations,

the third term on the right hand side can be neglected, allowing modelling
of the discharge as a two-ion discharge with a charge transfer frequency
equal to the total of the two individual charge transfer frequencies.

Although information on the diffusion coefficient for HN2* ions in N»
may exist, we were unable to find any. However, HN,* has approximately
the same mass as N2* . If both species could undergo resonant charge
transfer collisions with the background gas, we would expect them to have
similar diffusion coefficients. HN3* does not undergo any such collisions.
Therefore, we estimated its diffusion coefficient as 200 cm?¥/s, approximate-
ly 4 times larger than that of N2* . For the range of temperatures we found,
large differences in the diffusion coefficient can be accommodated with
small differences in kT, . The four-to-one difference in diffusion coeffi-
cients between HN2" and No* will produce noticeable differences in kTe..
However, small errors in Dy will not lead to large errors in kT, .

If we were trying to perform an exact simulation of the discharge, such
estimates would be inadequate. However, our purpose is to investigate the
effect of the introduction of a small amount of highly mobile ions on kT, and
the electron flux. For this reason, the exact values of kT, and the flux are
not as significant as how those values change under Hy contamination.

The input values are summarized below, all for 1 Torr pressure and
1 eV electron temperature:

1. Diffusion coefficients were 51.7 and 200 cm?/s for No* and HN,*,
respectively.
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2. Ionization potential for No was 15.8 V. There is no direct ioniza-

tion producing HN»*, so its value was irrelevant. An ionization

potential of 15.8 V was supplied to the algorithm, simply because the
algorithm required a number.

3. Ionization rate for No* was calcu{gted ysing a value of the initial

slope of the cross-section of 7.798x10" "' cm“/eV, as reported by Kieffer

(Kieffer, 1973: 82). With no direct ionization allowed, the ionization

cross-section for HN," is actually zero. However, a nonzero value

was required by the algorithm; the value used was some 30 orders of
magnitude lower than the N2* value, and therefore effectively zero.

4. The charge transfer rate constant was 2x10"? cm¥s.

We calculated electron temperatures and wall fluxes for 10% H2, 1% H,,
0.1% Hg, 0.01% Hs, and 0% Ho, all at 2 T pressure and 80 mA discharge
current. There is no special significance to the choice of pressure and
discharge current, except that it allows easy comparison to Schmidt and to
the previous calculations. In Figure 6-4 we show the results for the
electron temperatures.

We see that the admixture of even slight amounts of Hy can increase the
electron temperature. The addition of only 0.1% Hg produces a value for kT,
of 1.47 eV. This value is comparable to Schmidt’s results, which were in
the range of 1.4-1.5 eV. The change from 0 to 0.1% hydrogen represents a
13% increase in kT, , corresponding to ionization increasing by over 4
times. This result is readily explainable. HNj;* has a larger diffusion
coefficient than N3* . As a result, adding hydrogen to the plasma changes

the ratio of net source to diffusion. However, as we will discuss in more

detail later in this chapter, the boundary conditions fix a particular ratio of

net source to diffusion, analogous to the single-ion Schottky condition

(AoR)? = v/D . Since the increase of ionization frequency with electron
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Figure 6-4. Effect on Temperature of Small Amounts of Hz in N>

temperature is stronger than any other kT, dependence in the net source or
diffusion coefficient, an increase in the electron temperature will increase
the ratio of net source to diffusion, counteracting the effect of the increased
diffusion losses.

We note a clear saturation effect on the temperatures. The temperature
is approaching the value that would result if the only ions present were
HNz" . This value is slightly above 1.5 eV. Similar effects were seen in the
helium-neon temperature calculations presented earlier. There is a
significant difference. In the helium-neon example, the presence of one
gas had no effect on the net source of the ions of the other gas. Here,
charge transfer not only provides a source HNy", but also is a loss for Na*.

This causes a much quicker change in the amount of each ion species as
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the gas mixture changes. The result is that at only a 1% hydrogen gas
fraction, HN2* represents almost 99% of the ions in the discharge. As a
result, the transition from a temperature characteristic of N3* to a tempera-
ture characteristic of HN2"* is more abrupt.

Our results show that admixtures of even small amounts of Hz can
have a significant effect on the electron temperatures and partially explain
disparities in kT, between the original calculations in pure N3 and
Schmidt’s results. The presence of NH3" in the discharge has a significant
effect on the wall fluxes as well. Figure 6-5 shows the particle fluxes to the
wall, again for increasing percentages of H2 . These are complementary

results from the same series of calculations that produced Figure 6-4.
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Figure 6-5. Influence of Hydrogen on Particle Fluxes




Once more, we see a dramatic rise with the inclusion of even small
amounts of Ha . This time, a 0.1% addition of H3 increases the flux by a
factor of 4.35, equal to the change in ionization. As point of reference,
Schmidt’s result was approximately 9x10'%/cm?-s, which is achieved by
addition of less than 0.01% hydrogen gas. Again, the importance of these
results lies not in the exact values, but in the fact that small admixtures of
H2 can produce significant increases.

As did the temperature, the dependence of the flux on Hs percentage
shows a clear saturation effect. Figure 6-6 shows how the particle fluxes at
the wall shift from N2* to HNy* by depicting the ratio of each flux to the

electron flux.
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For our estimated values, it appears that saturation occurred for a less
than 10% H2 fraction. In fact, for a 10% Ha mixture, the discharge is
completely dominated by HNo* . The HN2" number density is 750 times that
of N2* , and the Ha* flux is 3000 times larger than the No* flux.

This dominance is the result of charge transfer. At these fractions of
Hjy , the charge transfer rate from Ny* to HN," is so high that the nitrogen
ions essentially disappear from the discharge. For instance, at 1% Hs
present in the discharge, we found that the charge transfer rate was
5.152X10'%/cm>-s, while the N,* source term was 5.154x10'*/cm3-s . In
effect, all the ionization that occurs produces HN3".

We should not place too much reliance on the exact point where this
domination occurs, nor on the values we calculated, because of the
estimates of the kinetic and plasma parameters we had to use. The
significance of this analysis is that it clearly shows that the presence of a
minority species can cause significant changes in the nature of the
discharge, far out of proportion to the percentage of the minority ion’s
parent gas.

In summary, we compared calculated results from two very simple
models to Schmidt’s experimental results. The N2*-N,* model was substan-
tially in agreement with Schmidt’s results for the pressure and current
dependence of the electron fluxes at the walls. It also agreed with
Schmidt’s results for the pressure dependence of the electron temperature.
Schmidt's temperature data had too much scatter to compare the depen-
dence between temperature and longitudinal current for the two models. A

possible discrepancy between the calculations and the measurements can
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be ascribed to varying amounts of hydrogen ions in the plasma. The only
significant disagreement between the two sets of results was in the overall
magnitudes of the electron temperatures and fluxes. However, the second
of the two models, which used charge transfer from N3* to HNy" clearly
demonstrated that the presence of minority gases can cause changes
sufficient to resolve the differences between the first model and the experi-
mental results. In addition, the simulation was able to provide information
about the relative values for the No* and N* fluxes and densities that
Schmidt was unable to produce.

Summary of Verification Results. We have compared the results of this
new ambipolar diffusion model to a number of experimental and theoretical
findings. We found exact agreement with the results that Wunderer
obtained for a very complex system, even though the two models were based
on substantially different assumptions. We verified Young’s analytic
model of electron temperature for the restricted regime where that model
were valid, producing results consistent with Labuda and Gordon’s
experimental results in that regime. Finally, we found reasonable
agreement between our simple simulations of Schmidt’s very complicated

discharge, and were able to use the capabilities of model to demonstrate

plausible explanations for those discrepancies that did exist.

Investigation of Generic Plasma Systems
Having established the validity of the new model, we now turn to using it
to explore physical systems. The systems we will examine can be divided

into two regimes; those driven by external sources, which are not affected
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by the plasma itself, and those driven by volume ionization caused by the
electrons in the plasma. For simplicity, we use cylindrical geometry in all
cases; adding planar geometry would have given different spatial profiles
for the densities and fluxes, but would have added no significant new
physical insight. All ihe systems involved electrons plus two ion species.

We chose several different phenomena to include in the simulations:

1. We included recombination of the second species. Recombination

is an important process in many gases. In principle, it can occur in

any discharge, if the charged particle number densities are high

enough. In practice, it is one of the more common nonlinear
processes. It is also easier to describe than other nonlinear processes
such as multi-step ionization, since it does not require keeping track

of any neutral species.

2. We also included nonresonant charge transfer. Unlike recombi-

nation, it is not a possibility in every discharge. However, as we saw

in the comparison with Schmidt using the No*-N,* system, there are

situations in some discharges where it can become significant.

We deliberately chose to neglect some phenomena that might be signifi-
cant in a real plasma. In the two examples involving external sources
volume ionization was neglected, and the electron temperature was
assumed fixed, independent of the external source conditions. In the
charge transfer example, recombination was neglected. In a real dis-
charge, these assumptions might not be valid. However, including them in
these investigations would have obscured the effects of the processes being
investigated. This neglect does not mean that the model could not have
included these effects. It only means that in the present examples the
choice was made not to do so.

External Sources. First, we examine the cases that rely on an external

source of ionization. We discussed plausible mechanisms for external




ionization in Chapter V. Those same mechanisms are applicable here:
photo-ionization, electron beam, and so forth. For these studies, we
assumed uniform ionization of levels appropriate to intense electron beams.
These source terms correspond to the ionization produced by kilovolt-range
electrons at current densities ranging from microamps to a few tens of
milliamps per square centimeter, with ionization efficiencies per electron
on the order of 1 ionization/cm-T (von Engel, 1965:63). For example, a
10 mA/cm? beam corresponds to 6.25x10'® electrons/cm?/s. At 1 ionization

016

per cm of flight, this produces a source of 6.25x1 electrons/cm®-s. We

included recombination as one example, and charge transfer as another
example.

With no volume ionization sources, the eigencondition involving the
electron temperature is no longer appropriate. In an actual plasma, the
temperature would be determined by the energy balance between the energy
input into the system and the energy losses. Describing that process
correctly involves the third moment of the Boltzmann equation. Since this
investigation only includes the first two moments of the Boltzmann equa-
tion, energy balance cannot be addressed. Instead, kT, becomes an input
parameter, instead of being a result of the calculation as it was in the
comparisons to Young and to Schmidt. A value of 1.0 eV was used for all
the calculations. The on-axis electron number density N,o is now deter-
mined from the calculations.

External Source plus Recombination. We examined at a system that
involved recombination for the second ionic species, No. The diffusion and

continuity equations for the system are
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The pressure was varied between 0.1 and 2.0 T, a range which gives a
reasonable variation and still guarantees that the plasmas investigated
satisfied the basic assumptions of ambipolar diffusion. Electron tempera-
ture kT, was 1.0 2V, and kT; was 0.02585 eV. The tube radius was chosen to
be 5.0 cm; there was no significance to the value, except to insure that the
diameter of the discharge was more than large enough to ensure that the
model remained valid.

The primary parameter of interest was the recombination rate coeffi-

cient a, which ranged between 0 and 10° cm?¥s. The upper limit is

somewhat higher than what we would expect in real gases (e. g.,
von Engel, 1965:158, 160). However, such high values allowed examination
of extremes of recombination which emphasized effects that otherwise
might not be as readily observable. The external source term for both
species ranged from 104 to 10'"/cm3-s at a pressure of 1 T, varying linearly
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with pressure. The variation in external source term was used to keep the
number density of the two species roughly comparable as recombination
varied. Although this variation would not occur in a realistic gas, it was
useful in that it reduced the tendency that would otherwise occur for one
species to completely dominate the discharge at high recombination
strengths. Calculations were also performed with the sources fixed but
with recombination varying in order to verify the effects of only recombina-
tion changing.

Parameters for the individual species (source terms, D, T,, and T;) were
chosen to approximate a 10/90% helium-neon mixture. However, there was
no attempt to match that system exactly. The diffusion coefficient for
species 1, which approximated helium, was chosen to be 300 cm?/s, with
species 2, which approximated neon, at 100 cm?/s. In all cases the diffu-
sion coefficients were to assumed to be constant with respect to changes in
recombination rate.

For that assumption to be valid, the momentum transfer collision

frequency v. must be greater than the recombination frequency for each
affected species. For ions, the recombination frequency is given by aN, ; the
corresponding electron recombination frequency is aNg . The diffusion

coefficient and average particle energy determine v, . For the ions, the

pressure range, diffusion coefficients, and ion temperature given above

produced a value in excess of 108 Hz for Ve , while the recombination

frequency was less than 10" Hz. The electron collision frequency can be

estimated using a value for the diffusion coefficient D, of 10% cm¥s at one
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Torr (von Engel, 1965: 141). This produces a value for v. greater than
10° Hz, while aN2 was less than 3x10° Hz in the worst case. Even if D, is

two orders of magnitude higher, v, is still greater than aNa . Therefore,
we conclude that we are justified in ignoring the effects of the varying
recombination on the diffusion coefficients.

High-Recombination Example. Figures 6-7 through 6-9 show the

results of one calculation. The input values and pertinent parameters

were:
1. Dy =150 and Dy = 50 cm?/s, adjusted for pressure.
2. $1=2x 10*° and Se=2x 10*° /(cms-s), also adjusted for pressure.
3. a=10° cm¥s.
4. Pic.sure = 2.0 Torr.
5. Debye length on axis = 2.5x10™* cm.
6. Deviation from proportionality: $; =0.0102 and B2 = 1.0099.

The value for B; was the smallest of any of the cases examined, and

therefore represents the largest deviation of species 1 from proportionality

of any case examined. On the other hand, the value for B2 represents a

value very close to what one would expect for a proportional discharge, cven
though the spatial dependence of N3 is indeed far from proportional. We
will discuss this point shortly.

Figure 6-7 shows the particle densities:
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Figure 6-7. Particle Densities for High Recombination

The “Schottky” profile, included for reference in Figure 6-7, is the
parabolic distribution that would result if only external sources were
present, with those sources adjusted to cause the two curves to match at
r = 0. This highlights the spatial profile difference between the “Schottky”
profile and the profile that N; assumes with recombination present for Nj.
In addition to the change in spatial profile, N; actually has a higher overall
density than it would have with no recombination. For the external source
terms listed on the previous page, but with no recombination, the on-axis
value for N7 would have been approximately 3 times smaller than that

shown in Figure 6-7. At first, this seems contradictory. However, recall

the momentum equation for N1: 9N/or=-T'//D;+eN1/Ne([/D1+ To/D2)/(1+€) .

The presence of recombination reduces I's, This allows the gradient ~f N;
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to be more negative. As a result, N; increases more rapidly as r decreases
from the edge of the plasma. As a result, its on-axis value is higher. At the

same time, N, is getting smaller as well. Eventually, the effect of N,'s

decrease overcomes the effect of I'o's decrease, and the on-axis value of N,

starts to decrease again.
It is possible to form an estimate of the on-axis ratio No/N, by noting that

the losses for N2 are dominated by volume processes. In that case, the
divergence of I'; is zero, producing Sg = aN,N2 . The value of N3 produced

from this express is exactly the same as that volume calculations.

The solutions presented in Figures 6-6 are obviously not equivalent to the
proportional solutions obtained previously for the CX case (which had no
recombination but which was otherwise analogous). We note significant
changes in the functional dependence of the number densities. In particu-
lar, the spatial dependence of Ny is clearly not the same as that of N,. The
number density for species 2 is no longer monotonically decreasing, but
increases throughout most of the discharge, then decreases near the edge.

Let us consider why the recombination-less CX case had the behavior it
did. In the CX case, the source term is external. In the steady state there
must be a sufficient loss to offset that source. If we examine the steady-
state continuity equation for electrons we find that the loss associated with

the divergence of the flux had two contributions: the diffusive fluxes,

defined by I' = -DVN , and the field-driven fluxes, defined by the expression

= uNE . Electrons respond much more readily to the field than the ions.

Therefore, the equality of elcctron loss and ion loss that is implicit in the
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ambipolar assumption is achieved by reducing electron flux much more
than by increasing ion flux. Thus, the ambipolar electric field is deter-
mined by the need to reduce the electron flux enough to match the overall
ion flux. However, there must still be a net flow of electrons outward at
every point. Since the electric field is driving electrons inward, diffusion
must drive them outward. Therefore, the slope of the electron density is
negative. Since we had proportional source terms and solutions for the CX
case, the ion densities also have a negative slope.

A different condition pertains for the present case. The electric field is
still reducing the electron flux and increasing the ion flux. But here,
recombination is so large (essentially equal to the source) for species 2 that
the field-induced drift of species 2 from the center of the discharge to the
edge causes larger losses than the external source term can compensate
for. As a result, the diffusion-induced current must oppose the field-
induced drift current for that species. The result is Ng increasing towards
the edge of the plasma. In fact, if recombination increases while all other
parameters remain constant, the on-axis losses can become so large as to
force flow radially inward instead of outward. Such a flow requires an
increasing particle density, not decreasing. It is this effect that we are
starting to see here.

We can also show the requirement for increasing Ng from the diffusion
equation for N2 . N3 increasing at r = 0 requires aszar2 2 0. The continu-
ity and momentum equations for No can be combined to form an expression

for 82N9/8r2 . Evaluating that expression with the small-e-flux approxima-

tion at the origin and taking advantage of both I'(0) = 0 and dN(0)¥dr = 0
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produces an expression involving the gas parameters and number densi-

ties, all evaluated atr=0:
S

N2 S_an,N,
Dy D ~

This form can be used to draw some immediate conclusions. First, note

(6-21)

that the right hand side is the ratio of the dimensionless net source terms
for the two ion species. In the limit as a goes to zero, this approaches
(S1/D2)/(S2/D3y), which equals Ny/Ny for the nonrecombining CV case.
However, the left hand side is always greater than N;/N2 , implying that

Equation 6-21 cannot be satisfied for a = 0. Indeed, the analytic solutions in

the CV case showed N3 decreasing near the axis. Second, allowing o to

increase causes the right hand side to increase. At the same time, Ny and

N, decrease, changing the left hand side as well. The calculations indicate

that for large enough values of a it is possible for the inequality to be

satisfied, thus producing an increasing N3 .
It would be useful to simplify Equation 6-21. From Chapter V, for a
discharge with no recombination (which is proportional) the conditions for

proportionality can be used to find the ratio No/N, at any point in the

discharge:

§z

v

(6-22)




Since adding recombination to species 2 can only reduce No/N,, this value
is an upper bound on N2/N, . This allows us to determine a necessary

condition for N3 to have a positive curvatureatr =0 :

Se
NAN(Lre) - Ng) <1 (6-21)

In Figure 6-8 we show the ratio Sge/aN2(N (1+€) - N2) resulting from a

series of solutions over a range of recombination coefficients.
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Figure 6-8. Effect of Increasing Recombination on On-Axis Curvature

As predicted in Equation 6-23, only the first two solutions shown

(@ = 10 and 10" em¥s, respectively) demonstrated a negative curvature

for N2(0) . (We show the particle density profiles for these systems in Figure

6-10. Although that figure has relevance to our discussion here, some of its




features are more readily explained after we have examined the fluxes.
Therefore, we will not introduce it here.)

Let us now return to a discussion of other features of Figure 6-7. Note
that the dominant ion species in the discharge changes, from N,, on axis,
to N2, near the edge of the plasma. This is a direct consequence of the
strongly rising N3 and the steadily decreasing N, and is the result of a loss
term that does not have the same spatial dependence as the source terms.
In this case the loss is proportional to N2 with the sources proportional to
N°

This change in the dominant species can appear in many situations. In
order for it to occur, the two ion species must have net source terms that
differ qualitatively in their spatial dependence. A typical example is where
other than linear source dependencies on number density (that is, none and
quadratic dependence) give rise to differing spatial profiles. The latter
situation can occur if two conditions hold:

1. One species must have a loss that is a function of number density,

while the other has a gain of some kind (or at least much less

corresponding loss). In the examples above, recombination or
charge transfer served this function.

2. There must be other source terms which do not counteract effects

of the loss term above. They could be independent of the electron

number density, as in external ionization, or at least depend differ-

ently on N than the loss term. An external source term or volume
ionization term can serve this function.

Let us now examine in detail how this switch in species dominance can

occur. Recall the general continuity and momentum equations for the

ions:
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Assume that the plasma conditions are such that the net source for

species 1 is positive and slowly varying at the center of the plasma while the
source for species 2 is approximately zero (including the I'/r term). As a
result species 1 has a flux that increases from zero while the flux for
species 2 remains at or near zero. Now consider the form the momentum
equation takes for species 2 for those regions where 'y = 0:

Nz N ml_l}

= ~2___ Y1
or N, (kT + kT,) €25

Every term in the right hand side of Equation 6-25 is positive, implying
dNo/dr is also greater than zero. Therefore, N9 increases from the center of
the plasma toward the edge. However, due to the boundary condition, it
must eventually reverse and drop to zero near the boundary. This implies

that dNo/dr will eventually become negative. The only possible negative

term in the complete momentum equation is a non-zero I'; . Therefore,

'z cannot remain near zero. At some point it must rise. Furthermore, the

closer to the edge of the discharge that point is, the more quickly N2 must
drop, and the larger I's must be. This sudden rise in I's will be shown

shortly.




In contrast to the changes of N2 , Ny will decrease smoothly to zero. If
N2 (0) is close to the value of Ny , but lower, and if the changes in N3 are
large enough, the result can be the change of the dominant ion species
shown in Figure 6-7.

Next, let us look at the fluxes, shown in Figure 6-9, for the same case for
which we depicted the particle densities in Figure 6-7. A limited vertical

axis allows clear depiction of the details away from the edge. At the edge,

we have values of 5.0x10"° , 5.04x10'7 , and 5.09x10'7 /cm?-s for I, 'z, and

[, , respectively.
We see differences from the proportional cases discussed in Chapter V.
There, we had fluxes that were linear functions of r; here, I, and 'y are

decidedly nonlinear in their overall behavior. In addition, the recombina-

tion-less CX case gives values at the edge of the discharge of 5x10 15 and

5x10' cm?/s for I' and T2, respectively. The present calculation gives the
same value for I'; ; from Equation 6-20, it is unaffected by the recombina-

tion. However, I'; at the edge of the plasma is approximately 1% of the

value for the same source terms without recombination, and is even less
within the discharge. This is not surprising; for this example, the losses
due to recombination (calculated on axis) are equal to So (within 4 signifi-

cant digits). Recall the continuity equation for species 2:
V-T2 =Sg - aNN» (6-26)

If S =aN N2, then V.-T'3 = 0 . If we evaluate V- at r = 0 using
L'Hospitale’s rule, we find that I'is given by I' = (S3 - aN1N2)r/2 . With no
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Figure 6-9. Fluxes with External Sources and High Recombination

recombination, we have I'~S3 r/2 , which is a much larger value. Both
approximations are valid only in the immediate vicinity of the axis, but the
behavior they exhibit continues throughout the region where S; = aN;Ns .
At the edge of the discharge, the rapid drop in N3 reduces the recombina-
tion which no longer offsets S and thereby produces a very large increase
in I'2. Even so, I’y is still much less than it would have been without
recombination.

In Figure 6-10 we show the effect of increasing recombination clearly by
presenting a series of solutions with increasing recombination rates.

These are exactly the same solutions presented in Figure 6-8. We should

point out that the negative curvature of Ny discussed in conjunction with
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Figure 6-10. Radial Profiles of Recombining Ions for Recombination Rates
Ranging from 10-6 to 10-14 cm3/s in a 2-Torr Discharge
Figure 6-8 is difficult to distinguisk in Figure 6-10. However, careful
examination of the data reveals that the results are indeed consistent with
Equation 6-23.
All the curves differ only in their recombination rate, which is one

order of magnitude smaller for each curve up the graph. The lowest curve,




which has the largest recombination rate, is the same system as that
presented in Figure 6-7.

Here we can clearly see the effect of the recombination; as the recombi-
nation increases, the overall density drops, the profile becomes flatter, and

eventually the curvature in the center reverses. Note that the reduction in
N2 varies as V% as a changes by 100, N2 changes by approximately 10. A
simple explanation is that recombination goes as NZ a 10-fold change in

the number densities compensates for a 100-fold change in « .

In Figure 6-11 we show the ratio of the field with no recombination (Ey)
to the calculated electric field (E) for the case just examined. In both cases
we evaluate the field from Equation 6-1.

Note that there is a sizeable difference between the two fields, with Eg
greater than E throughout the discharge. This is to be expected. As we
discussed on several occasions, both in this chapter and previously, the
main effect of the ambipolar field is to counteract the diffusion term in the
electron flux, not the ion flux. With heavy recombination, the interior of the
discharge is dominated by volume losses, not diffusion. With electron
diffusion less important, the need for a field to counteract the diffusive flux
of the electrons is lessened. Near the edge of the discharge, where recom-
bination is becoming less of a factor, this situation changes. The discharge
is no longer dominated by recombination, and the field must increase to
reduce the electron flux. Indeed, this behavior is exactly what the graph
above depicts. At the edge, both fields approach infinity, but there ratio
approaches one. However, at the edge of the discharge, the ambipolar

model is no longer valid, and so the value of the field has little meaning.
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Figure 6-11. Ratio of Non-recombining to Recombining Field
The reduction of the field due to recombination can also be seen from the

general expression for the field, given in Equation 6-1, and repeated here:

ol
KT 1D, "D,
€ NkT, + kT

(6-27)

By using the Einstein relation to express ¢/kT in terms of w/D, and
noting the expression for dN,/dr from Equation 6-1, we can rewrite this as

E=.De YNe
He N,

(6-28)

This expression describes the electric field as proportional to the
normalized gradient of the electron number density VN./N.. Note that as
we add recombination, we increase the volume loss per electron. There-

fore, to keep the total losses in the plasma equal to the total source term, we

must decrease the diffusion loss per electron. But the diffusion losses per
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elect on are proportional to VN/N, . Therefore, from Equation 6-28, adding

recombination reduces the electric field.

Some of the features depicted in Figures 6-7 through 6-11 are related to
the somewhat artificial uniform external source term, not to the discrete
numerical method. In particular, note the sudden drcp in No at the edge of
the plasma. This drop occurs over the last two calculation points in the
grid, and is just an extreme example of what occurs in systems with less
recombination. The constant source term is almost exactly matched by the
recombination term. If there were no boundary at all, the match would be
exact and the solution would be a spatially uniform value for No . However,
this solution does not satisfy the boundary conditions. Eventually, the
presence of the boundary forces N2 to zero, with a transition from a recom-
bination-dominated to a diffusion-dominated discharge. The larger the
recombination rate, the closer to the boundary this transition occurs. An

estimate of the transition point can be made by equating the recombination

frequency aN, to the effective diffusion loss frequency defined by DJ/(Ax)?,

where Ax is the distance from the transition point to the edge of the dis-
charge. For the example given in Figure 6-7, the dat. reveals that the
transition occurs at Ax on the order of 0.025 cm, or equivalently, r=4.975 cm.

At that point, alN, is 3.8x10° Hz, and D/,,.(Ax)2 is 3.2x10° Hz. This is accept-

able agreement.
Nonproportionality. We wish to discuss the implications these
results have for the onset of nonoroportionality. We will first discuss the

example described in Figures 6-7 through 6-11, concentrating on conclu-




sions we can draw from that single case that are valid for a wide variety of
cases. We will then compare results from a number of different cases, with
the intent of drawing conclusions about the general relationship between
recombination and nonproportionality.

Let us quickly review proportionality. Proportionality is the property of
some multi-ion discharges that N; = KN, , for every ion species i. The
results of Chapter IV included the following necessary condition for
proportionality to hold:

v %

A
J

=K (4-13)

We defined a measure B; = (88 MTi/Te) which describes how far each

species deviates from proportionality. A value of 1.0 indicates that the ion
flux fraction at the edge of the discharge is precisely what would occur in a
proportional discharge with the same values for the proportional source

terms. Other values indicate that the flux is different from the proportional
result by a ratio ; . Although B; is not an ideal measure, it does provide a
consistent means of describing a variety of discharges.

Note the anomalies between our measures of nonproportionality and the

results of Figures 6-7 and 6-8. Recombination affects No much more

strongly than it does N; . Yet, B2 had a value very near to 1.0, indicating a

propertional system, and B, was far from 1.0, indicating nonpropor-

tionality. The reason is the extremely high recombination rate in this
discharge, coupled with the large difference in source terms. Since Sj is

10* larger than S; , S, is essentially equal to So . Recombination reduces the
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net source for I'; and therefore I'y itself to essentially zero throughout most

of the discharge. However, N3 and N, fall precipitously near the edge of the

discharge, reducing recombination and increasing the net source for I'p.
As a result, I'; rises rapidly until I’y and I, are almost equal at the edge of
the plasma. Since B2 compares S; and S, on axis to I'; and I, at the edge we

are left with B remaining close to 1.0. Effectively, we compare a ratio that

ignores recombination (So/S, ) to one that is evaluated where recombination
affects both factors equally (I'y/Te ) . The situation is different for I'; . I';is
not directly affected by recombination anywhere; its continuity equation

contains only the uniform source term. (Note that the same cannot be said

for N;; the momentum equation for each species contains the fluxes for all

the ion species.) T, is affected by recombination everywhere. Thus, B;is

comparing a ratio that is independent of recombination (S1/S, ) to a ratio

where the two factors are affected differently by recombination (I'y/T, ) .

Therefore, B; is markedly changed as recombination losses competitive to

the diffusion losses are added.

This should not be construed as a failing in our measure of nonpropor-
tionality. Rather, it should alert us to the fact that “nonproportionality” is a
highly mutable concept. From Chapter IV, we note that proportionality
fails when we have source or loss terms that affect the different species by
different amounts. In Figures 6-7 and 6-8, we depict a system where

species 2 and the electrons have similar source terms, and therefore




similar spatial dependence. Species 1, with its different source term, has a

different spatial dependence, and therefore demonstrates “nonproportion-

ality”. A sirgle evaluation of B is not sufficient to demonstrate proportion-

ality. Rather, both of the f parameters must be examined.

In spite of these considerations, note that in some sense a system such
as that described in Figures 6-7 through 6-11 can be said to approach a limit
of proportionality at both very high and very low recombination rates. For
no recombination, the system corresponds to the proportional solutions we
obtained as the CX case in Chapter IV, earlier. But consider the opposite
extreme, where recombination for N is extremely high. There are two
contrasting possibilities.

First, we could have a source term for the recombining species large
enough to prevent it from vanishing from the discharge. This was the case
for Figures 6-7 through 6-11. Even though N3 undergoes an extremely high

recombination rate, its source is so high that its contribution dominates the

total electron source S, . The result, as we saw, is a value for B3 indicating

a proportional discharge, and one for B; indicating a non-proportional
discharge.

For comparable source terms and high recombination of Ny , we find
that N will essentially vanish from most of the discharge. We then are left
with a single-ion plasma, which is trivially proportional if we consider only
the dominant non-recombining species N;. However, in such a case the

recombining species N2 would have a nonproportional profile.




From such considerations we can see that a universal measure of

proportionality is difficult to define. As discussed above, B; actually gave a

stronger indication of nonproportionality than P, in a system where species

2 had a source so high that S; and S, were essentially equal, but species 2
was also much more strongly affected by recombination. In that system the

sources and fluxes were both dominated by species 1. As a result, even

though recombination reduced I'y, it was still so much larger than I'; at the
wall that it dominated, and B2 was close to 1. In a system where the source
terms are more closely equal, the reductions in 'y produced by recombina-
tion are more discernible, and B2 can give stronger indications of nonpro-
portionality than ;.

Because of situations such as this, it is important to define the propor-
tionality or nonproportionality of a system in terms of both species, not just
one.

Next, we wish to examine the correlation between the ratio of external
sources to on-axis recombination loss on the one hand, and the deviation
from proportionality on the other. Because of the widespread use of
proportionality to describe systems which are not strictly proportional, it is
worthwhile to examine this in more detail, by investigating a number of
systems where the only change is the amount of recombination. All the
systems investigated were at a pressure of 1.0 T, with a radius of 5.0 cm. All

parameters not mentioned specifically below were identical to the system in
Figure 6-7.




In Figure 6-12 we show 1/B; and P; as functions of aNsN./Ss , which

measures the importance of the recombination term versus the external

source term for species 2. The source terms for both species were equal to

10'7 /cm®-s. We show 1/B; instead of B, strictly for convenience; nonpropor-
tionality is indicated by deviation either above or below 1.0. OQur choice of

1/B; causes both measures to deviate in the same direction.
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Figure 6-12. Deviation from Proportionality As Recombination Increases,
Equal Sources

Figure 6-12 presents a system where B, and B, give consistent measures
of nonproportionality. As the ratio aNsN./S; increases so do both /B, and
B2 , indicating increasing nonproportionality. Note that B, is always

slightly greater than 1/B, . Without the perturbing effect of differing source

terms, the species that is directly involved in the recombination is the one

showing the greatest deviation from proportionality.




In Figure 6-13 we show similar results for a case where the sources
terms differ. The “Nonequal Sources” cases had S; equal to 10 16 and Ss
equal to 10'”/cm3-s. All other parameters were identical to the previous

cases.

1/8:; Be

0.2 0.4 0.6 0.8 1.0

Figure 6-13. Deviation from Proportionality As Recombination Increases,
Nonequal Sources

Again, as recombination increases, so does nonproportionality. How-
ever, now L/ f; islarger than B2 . The effect of the nonequal sources is
changing the relative importance of the two measures. This is a milder
case of what we saw in Figures 6-7 to 6-11; even though species 2 is more
strongly affected by recombination, the difference in source terms masks
the effects on species 2, so that species 1 shows the most nonproportionality.

As we saw from the system shown in Figures 6-7 through 6-11, it is

possible for a system with widely differing sources to have at least one of the

B’s nearly 1, even with recombination losses approximately equal to the

sources. Such cases arise when the recombining species (N2 , in this case)
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has a large enough source term that it would dominate the system, were it
not for the presence of the recombination. We are beginning to see that
effect here, for a system with sources more nearly equal.
Conclusions. Several conclusions can be drawn for recombining

plasmas maintained by external ionization sources:

1. In a multi-ion plasma with significant recombination present, if

the recombining species is not negligible, none of the densities will

have spatial profiles the same as those in a recombination-free

discharge.

2. If the ratio So/a is small enough the particle density for the

recombining species will have a minimum at the center of the dis-
charge. Equation 6-23 gives a sufficient condition for this to occur:

So€
aN(N1(1+€) - Ng) <1 6-23)

This can occur for fairly small values of a, as shown in Figure 6-8.
3. Measures of the deviation from proportionality give results that
are inherently dependent on the definition of the measurement

parameter. Therefore, it is imprudent to claim that a system

deviates little from proportionality unless the measurement is
defined.

External Sources plus Charge Transfer. For the case just finished,
we examined nonproportional systems arising from source terms that were
independent of charged species number density and loss terms that were
quadratic in number density. Now we will examine the nonproportional
systems that arise from the same source terms combined with a non-
resonant charge transfer term that is linear in charged species number
density. We saw an example of nonresonant charge transfer in the
comparisons to Wunderer, who used an external source and included
recombination, and to Schmidt, which used volume sources and included

recombination in one of the two sets of calculations. Here, we use a simpler
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uniform external source term than Wunderer’s, and include no recombi-
nation. The choice of a simpler system enables us to distinguish the charge
transfer effects from effects such as recombination.

Under such conditions, the diffusion and continuity equations are

l".
KTy ), =
N _ G, N D
or D Ne(kTo""kTi)
r.
kT.Y L
aNe ',ZD:'
or kT, + kT;
M _s v L (6-29)
or
oI’
—2-=52+VW1--I-;2
ar
a—I--?-=Sz+Sl-£r'-
or

where v; is the charge transfer frequency, and where the other quantities

retain the same definitions is in the recombination case.

The algorithm used to perform the calculations was the same that was
used to perform the recombination calculations; the input parameters were
changed to reflect no recombination, and to add charge transfer. The
actual charge transfer mechanism was based on associative charge
transfer, which requires a mediating background particle. This reaction
was chosen because it was appropriate for the No*-N,* system used for the

comparison with Schmidt’s experiments.




For these calculations, v; ranged from 0 to 7x10° Hz. We have assumed
the diffusion coefficient to be constant as v; changes. For this to be a valid

assumption, we must have v much less that the momentum transfer

collision frequency for ions. For the diffusion coefficients (~100 cm?/s), ion
temperatures (0.02585 eV), and hypothetical ion masses (~10 amu), the

momentum transfer collision frequency is on the order of several times 108

Hz or higher. Therefore, even at the highest values of v; , it is reasonable to

assume that the diffusion coefficient is independent of v; .

As was discussed in the introduction to the investigations of generic
plasmas, no claim is made that this system completely models a realistic
discharge. Nonetheless, the simplifications (constant kT, , constant kT;,
and so forth) allow concentration on the effects of charge transfer per se.

High Charge Transfer Example. In Figure 6-14 we show the
number densities for one particular case. This case was chosen because it
illustrated high nonproportionality. The input parameters for this case
were

1. D; = 3000 and Dz = 1000 cm?/s.

2. Pressure was 0.1 Torr.

w

. The external sources were 10 /cm>-s for each species.

>

. The charge transfer frequency was given by v, = 7x10° Hz.
5. The Debye length was = 4x10™ cm.

6. The deviations from proportionality were given by B; = 49.94 and
B2 = 0.50505.
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Figure 6-14 Number Densities with High Charge Transfer Present

The charge transfer term is so large as to be essentially equal to the
external source term In fact, the charge transfer term on axis is .9997 of
the external source term for this case, and approaches 1.0 in the limit of
increasing charge transfer. This is not coincidence. Charge transfer for
N; is much larger than diffusion, except near the edge. With the dominant
loss mechanism not being diffusion, there is no need for a density gradient.
Instead, the number density is controlled by the balance between source
and loss:

S =vN1 (6-30)
This produces a value for N; of 1.44x10'%/cm?3, exactly the value shown
above. The only significant departure from the flat profile is near the edge,
at approximately 4.7 cm. As before, the presence of the boundary of the
plasma starts to affect the plasma, allowing diffusion to become significant

again.




N, is reduced almost to the point of extinction, compared to N2 . As a
result, N2 and N, are identical to within less than one part in 103, except at
the very edge of the discharge. In fact, except near the edge, N; and N,
have a functional dependence as if there were only one species in the
plasma, whose source was S; + Sz . The profiles for species 2 and the
electrons agree with the Schottky profiles for such a source within an error
of considerably less than 1%. This contrasts with the recombination case,
where the effect of recombination on the electron source term affected N,
and kept any of the particle densities from attaining Bessel function
Schottky profiles. However, the very large charge transfer rates do not
affect the electrons, and thus produce a Schottky-like profile both for the
electrons and the dominant ion.

We did not find a spatial profile for any species that increased from the
center to the edge, for any of the charge transfer cases examined. This is
somewhat in contrast to the previous recombination case, where one
species (N2) rose on axis. Let us examine why. If we take the divergence of
the momentum equation for N; , and then use the continuity equations to
evaluate the results, we can determine an expression for the curvature of
N1 and evaluate it on axis. For N; to rise from on axis, that expression

must be greater than zero. From that condition, we derive the following

equivalent expressions:
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(6-31)
+V
(EN, + N2) Do )

R

These are analogous to the relations expressed in Equations 6-21 through

6-23. The related structure is clear. Just as in the Equation 6-21, we have

an inequality relating the ratio of the source terms to a quantity that is

nearly the ratio of the ion number densities. In the limit as v, goes to zero,

the right hand side of Equation 6-31 becomes the ratio No/N; for a propor-
tional system with uniform external sources. This ratio was discussed for
any proportional system in Chapter IV, and for the CX case in Chapter V.
The left hand side is always greater than No/N;. Therefore, our conclusion
is that N, does not increase at r = 0 for such proportional cases. This is in
agreement with the analytic solution we found for the CX case in Chapter
V.

We see no general conclusions that can be drawn at this time from
Equation 6-31, except to note that the spatial profile of N; will rise if the
inequality is true when evaluated on axis. For the example depicted in
Figure 6-14, Equation 6-31 would require 2.24x10* < 2.22x10* . This, of
course, is not a valid relationship, and is consistent with our results, that

showed no rise in N as a function of increasing r.
Figure 6-15 shows the fluxes for the same case. Note that I'y demon-

strates the same nonproportionality (as defined in Chapters III and IV)
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Figure 6-15. Particle Fluxes with High Charge Transfer

that N; demonstrated in Figure 6-14, and for much the same reasons.

Recall the continuity equation for I'; :

ar
a—1=SI‘VtNl‘£r‘L (6-32)
r

For this example, S; and v{N; were almost equal through most of the
discharge. Therefore, I’y remained very small. Only at the edge, where N;

starts to decrease, does the net source become appreciable, allowing I'; to
rise.
This near-equality of S; and v;N; also explains the nearly flat spatial

dependence we saw for N; . Consider the momentum equation for N; :
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The last term on the right hand side varies as XI'/D, scaled roughly by

kT /kT, and N;/N. . Both these scaling factors are less than one. This
reduces the effect of this term and increases the relative effect of the first

term on the right hand side. In addition, as charge transfer reduces N, ,

Ni/N, reduces the second term even more. Therefore, the -I"1/D; term has
the largest effect on N; . In this particular case, I')/D; is reduced almost to

zero, producing the flat density profile. Only at the edge where I';/D;

becomes much larger do we see significant changes in Nj .

We do not show the electric field. The reason we do not is that our
results show that it differed by less than 0.2% from the field produced with
no charge transfer at all. There is a simple explanation for this. This
discharge is so dominated by charge transfer as to appear as a simple
single ion, uniform external source system. Let us recall the electric field
for such a case from the CX case of Chapter V. The field in the small-e-

flux approximation is

= _ﬂe_%r_ (6-34)
e(R? - r2)

This is a field that depends only on position and the electron temperature.
(If we did not use the small-e-flux approximation, we would see a small
additional dependence on the ion temperature.) For the same electron
temperature, all such systems have the same electric field. Thus, the field

for the present case is essentially identical to the field in the CX case and

6-73




independent of all ion properties (to the extent that the small-e-flux approx-
imation is valid).

Finally, before we leave this example, we should note that we also made
calculations where we used a zero source term for N2 , but with all other
parameters the same. The only significant difference was that Ny and N, ,
along with their corresponding current densities, were reduced by a factor
of 2. This is not unexpected; the charge transfer rate is so high that any
ions of species 1 that are created are immediately lost to produce ions of
species 2. Therefore, the total source for species 2 is S; + S;. If we elimi-
nate Sz , we reduce the species 2 source by the appropriate amount; one
half, in this particular case.

Nonproportionality. Finally, we wish to discuss the onset of

proportionality, much as we did for the recombination case. In Figures

6-16 and 6-17 we show B; and 1/, as a function of the normalized charge

transfer term. As before, we show the reciprocal of one measure so that
both measures will vary in the same direction. The last point on the right
in each figure corresponds to the high charge transfer case just presented.

Nonproportionality steadily increases as the term producing the

nonproportionality increases. Initially B; increases much more slowly

than 1/B2 , but eventually reaches much higher values. Note that, for a

system with an infinite charge transfer rate from species 1 to species 2

(impossible, except as a limiting case), I'; at the edge of the discharge goes

to zero and I'y goes to twice the value it would have with no charge transfer
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Figure 6-16. Deviation from Proportionality As
Charge Transfer Increases, Species 1
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Figure 6-17. Deviation from Proportionality As
Charge Transfer Increases, Species 2

(for equal sources). Under those circumstances, 1/Bo would be limited to a
value of 2 and B; would become infinite.

Similarity Parameters. There is one last observation to make

about charge transfer. For certain combinations of plasma parameters,

6-75




two different discharges could have the same values for their spatial
profiles and for the quantities related to those profiles. As an example, we
will compare two discharges, one at 0.1 T, and the other at 1 T. The

following values, which determine plasma conditions, were the same for

both discharges:
1. Sy/p, where k represents either ion species, or the electrons and p

is the pressure.
2. VtN]_/S] .
With these inputs to the model, we found the following output parame-

ters to be the same for both discharges:

1. B;.

2. B2.

3. EE.

4. Spatial dependence of the various fluxes.

Although the particle fluxes had the same position dependence for both
species, they differed by a factor of 10 in magnitude (i. e., I'/p was invari-
ant). This is in accordance with the model, which predicts that the fluxes
should scale linearly with net source (see Equation 6-1); the source terms
for the two discharges also differed by a factor of 10. (This was due to the

10:1 pressure ratio of the two discharges.) The number densities also had

the same position dependence, but differed by a factor of 100. Equation 6-1

indicates that the number densities scale by I'/D . For these discharges, the

pressure difference caused the diffusion coefficients to differ by a factor of
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10. In conjunction with the scaling of the fluxes, the model predicts a
change by a total factor of 100.
We can draw the following conclusions from these observations:

1. Discharges at different pressures, whose external sources are
proportional to the pressure, and whose ratios of charge transfer to
external source for the losing species are identical, will have the
same spatial dependence, with all that implies for nonproportion-
ality, field, and so forth.

2. Discharges that are driven by external sources, and undergo
charge transfer as their only volume kinetic reaction, scale the same
as discharges with the same sources, but no charg: transfer. That is
to say, the flux densities will scale as the exterrial source, and the
particle densities will scale as the source divided by the diffusion
coefficients.

In practice, of course, it would be very difficult to find discharges satisfying
these constraints. However, the existence of these relationships forms a
useful validation for theoretical analyses. For instance, any numerical
model would have to satisfy these constraints. This provides a useful tool
for verification of the numerical method.

Summary of Charge Transfer Results. To summarize the results
for the charge transfer case:

1. As the level of charge transfer is increased, some parameters of
the system becomes more non-proportional, either in the absolute
sense or in the sense of deviating more from the values found with no
charge transfer. In particular, those parameters which depend on a
single ion species, such as the spatial profiles of the individual
fluxes, are more likely to display these effects than parameters that
depend on more than one species, such as the field.

2. At extreme levels of charge transfer, some parameters of the dis-
charge act as if it were a single-ion discharge, whose source is equal
to the total source for both ions. In particular, those parameters that
depend on the electrons, as opposed to the individual ion species, are
more likely to take the values appropriate for single ion Schottky
cases. The electric field in particular displays such behavior.
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3. The parameters Sy/p and v.N,/S; serve somewhat as similarity
parameters; any two discharges for which these are equal will have
similar spatial dependencies.

4. At no time did we find cases where any of the particle densities

increased from the center of the discharge. It is possible to deter-

mine tests to see if such increases will occur, but we drew no
conclusions about whether such conditions could hold.

Volume Sources. Next, we will investigate one example of a volume
sources of ionization, in addition to the various examples addressed while
verifying the model. This example examines the effects of recombination in
volume source discharges. The discharge chosen has volume sources
proportional to N,. We will not examine charge transfer. Since both
charge transfer and the volume source term depend linearly on the number
densities, the results for that system in cylindrical geometry are propor-
tional analytic solutions analogous to those discussed in Chapter V as the
PT case.

Volume Source plus Recombination. For this case, the momentum

and continuity equations become:
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N _ L, N 1D
or Di N, (kT,+kT))
F.
KTiY, =
Ne 15
or kTe + kT;
TowN,-0 (6-35)
ar
T2 _ N, - aNoN, - L
or
T,

=1+ valNe - alNgNo - Le

We chose parameters that correspond roughly to a 10/90 mixture of
helium (N;) and neon (N2), although with no pretense that we are model-
ling that system. With the predominance of the background gas being the
species with the higher ionization frequency (N2 in this case), we could thus

ensure that only one species would undergo significant recombination. We

chose D, and D2 as 100 and 400 cmz/s, and determined v; and vg partly by

the relative fraction of each gas, and partly by the characteristics of the gas
species itself, to be 10'%° and 10 times the total background gas number
density. All four parameters were input with values appropriate forp =1T
and kT, = 1 eV. These values are of the same order as the values for

unmixed helium or neon discharges, but are otherwise chosen purely for

convenience. We chose values of a between 0 and 10~° cm?¥/s. Although

the latter value was considerably more recombination than typical in a real

gas, the range was chosen to demonstrate the effects of the recombination.
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Pressures ranged from 1.0 to 5.0 T. As before, the radius of the discharge
was chosen as 5.0 cm.

In the external ionization case, the presence of a source term that was
independent of the conditions in the plasma determined a particular value
for the on-axis number densities. The lack of an external ionization source
changed the nature of the problem significantly. As was discussed in the
comparable PS and CS analytic cases in the previous chapter, the removal
of the external source, combined with boundary conditions of the fluxes
being zero on axis and the densities being zero at the discharge edge, allows
only trivial solutions unless the electron temperature is fixed at a particu-
lar value. For the PS and CS cases, an explicit analytic eigencondition fixed
kT,. This eigencondition was based on the additional constraint that N, be
non-zero at at least one point, with that point being chosen r = 0 for conve-
nience. A similar constraint leads to eigenvalues for the volume source
with recombination case, as well. We established that constraint by normal-
izing all the densities and current densities in the system by dividing by the
electron density on axis, Neg. This normalization produced an additional
constraint on the normalized N,, which acted as an additional boundary

condition:

NdO) _;0
Neo

(6-36)
Algorithmically, the additional boundary condition requires an additional
differential equation and dependent variable in the numerical system. kT,
became the additional dependent variable, with a derivative identically zero.

The result was a system of five differential equations: the momentum

equations for N2 and N, and continuity equations for the ions, as described
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in Equation 6-35, plus the trivial equation dkT,/dr = 0 . The five boundary

conditions were N(R) = 0 and I'(0) = O for the appropriate species, plus

Equation 6-36.

In such a system, it is necessary to have some mechanism to allow the
system to respond to changes in the eigenvalue. Otherwise, there is no
coupling between the plasma conditions and the eigenvalue. In this
calculation there were several such mechanisms. First, kT, enters directly
into the momentum equations. Second, the ionization frequencies and
recombination rate were realistic functions of kT,. Details of this modelling
will be left to Appendices C and D, which document all the numerical
algorithms used.

The normalization produced an additional input parameter, the actual
on-axis electron number density , N¢o. In a real discharge, Noo would be
fixed by the energy balance in the system. For instance, in a glow dis-
charge, the external circuit parameters fix the longitudinal current. That
current, along with the diffusion losses, then fixes N.o. Energy balance is
not included in this model. Therefore, Neo becomes a free parameter and
was allowed this to range from 10 1046102 cm™® . This range was chosen in
conjunction with the pressures mentioned earlier. The upper value was
chosen somewhat arbitrarily; we feel that 10 12 was high enough to demon-
strate the effects we wished to examine, and was at the upper end of
densities that can be realistically considered as weakly ionized. At higher
densities, Coulomb collisions start to become significant, and the weakly
ionized nature of the discharge is lost. For instance, from Mitchner and

Kruger, we calculate that a 1 T, 1 eV hydrogen plasma can no longer be
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considered weakly ionized for electron densities greater than 10*%/cm?
(Mitchner and Kruger, 1973:60). Since we wished to stay well into the

3

weakly ionized regime, we used 10'%/cm3. The lower limit of Ne.o was

chosen because, even at the maximum pressure and a used, any lower Ngo

would have produced no discernible recombination. Such cases can be
modelled by the solutions of the previous chapter, and need not be examined
here.
High-Recombination Example. At this point, we shall present an
example, with the parameters shown:
1. Dy and Dy were 100 and 400 cm¥s.
2. Pressure was 1.0 T.

3. N (0) was 102 em3,

4. awas 10° Nig cm3/s, 